
# BIOFERTILIZATION OF FORAGE SORGHUM TO INCREASE POLYPHENOL LEVELS FOR A POSSIBLE ANTI-METHANOGENIC EFFECT

ARELY GUERRERO-DE LIRA, CRISTIAN LIZARAZO-ORTEGA, MARÍA CRISTINA HERNÁNDEZ-JIMÉNEZ, RÉGULO RUÍZ-SALAZAR, JOSÉ HERNÁNDEZ-MENDOZA, ANA GONZÁLEZ-PÉREZ AND GUADALUPE RODRÍGUEZ-CASTILLEJOS

#### SUMMARY

Methane gas is one of the main contributors to global warming, as it traps more heat than carbon dioxide in the atmosphere; livestock produce a significant percentage of this gas, so one viable alternative is to reduce methanogenesis in the rumen by providing a diet rich in polyphenols. In the present study, the increase in polyphenolic compounds in forage sorghum was evaluated, since this crop is commonly used as cattle feed. Four treatments were applied: a mixture of Bacillus sp., Azospirillum brasilense, Trichoderma, a combination of fungi and bacteria, and a control group. These treatments were tested on seven varieties of forage sorghum grown in Mexico (Cañaveral, Sureño, MXSE45, Tehua, Cañero, MXSE2, and MXSE19). On days 20 and 56 after planting, morphoagronomic parameters were measured (plant height, stem diameter, and photosynthetic activity), as well as the concentrations of phenols, flavonoids, and tannins. Variety MXSE19 showed the highest values for height, plant weight, and phenol concentration, with the Trichoderma treatment being the most effective variety-microorganism combination. The Tehua and Cañero varieties exhibited the lowest values across all treatments. The use of biofertilizers in forage represents a potential strategy to increase the concentration of polyphenols, which have anti-methanogenic activity.

### Introduction



concentration from 1,650 to 1,932.23 parts per billion (ppb) over the last 35 years (Džermeikaitė et al., 2024; Lan and Dlugokencky, 2024). Livestock farming systems are major emitters of methane; the main greenhouse gases they produce are CH<sub>4</sub> (43%), nitrous oxide  $(N_2O, 29\%)$  and carbon dioxide (CO<sub>2</sub>, 27%). Ruminants contribute approximately 20% of global

CH<sub>4</sub> emissions; this gas is generated primarily through the anaerobic decomposition of organic compounds in forages by bacteria (Džermeikaitė et al., 2024; Merino et al., 2011). During this process, archaea use dihydrogen and carbon dioxide to synthesize CH<sub>4</sub> (Merino et al., 2011).

KEYWORDS / Anti-Methanogenesis / Forage / Global Warming / Greenhouse Effect / Livestock / Polyphenols / Sorghum /

Received: 06/06/2025. Modified: 10/01/2025. Accepted: 10/03/2025.

Arely Guerrero-De Lira. Master in Food Science and Technology. Ph.D. Research Professor, Unidad Académica Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Mexico.

Cristian Lizarazo-Ortega. Master in animal production. Research Professor, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Tamaulipas, Mexico.

María Cristina Hernández-Jiménez. Doctor in Biotechnology. Ph.D. Research Professor, Unidad Académica Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Mexico.

Régulo Ruíz-Salazar. Doctor of Sciences in Biotechnology. Ph.D. Research Professor, Unidad Académica Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Mexico.

José Hernández-Mendoza. Doctor in Science. Research Professor, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Tamaulipas, México.

Ana González-Pérez. Doctor in Biotechnology. Ph.D. Research Professor, Unidad Académica Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Mexico.

Guadalupe Rodríguez-Castillejos (Corresponding author). Doctor of Science in Biotechnology. Ph.D. Research Professor, Unidad Académica Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Mexico. Address: Calle 16 y Lago de Chapala, Aztlán CP 88740. Reynosa, Tamaulipas, México. e-mail: gcastillejos@docentes.uat.edu.mx.

There is growing scientific interest in controlling ruminal methane production due to its environmental impact and the associated energy losses (Haque, 2018). Several CH<sub>4</sub> mitigation strategies are currently under investigation, including modification of diet composition, selection of low-emission animals, intensification of production systems, use of secondary plant compounds, chemical inhibitors, immunization, defaunation, reductive acetogenesis, and bacteriophages (Ungerfeld et al., 2018). A natural mitigation alternative that has gained relevance in animal nutrition is the use of secondary plant metabolites. Several studies have demonstrated the capacity of certain compounds to reduce methanogenesis through different mechanisms of action (Goel and Makkar, 2012; Kim *et al.*, 2015; Moscoso *et al.*, 2017; Vélez-Terranova et al., 2014). Additionally, research has been conducted on the use of microorganisms as biofertilizers, which may enhance the production of plant metabolites (Fasusi et al., 2018). Furthermore, the use of microorganisms as fertilizers is considered an eco-friendly alternative to chemical fertilizers, promoting plant growth and improving soil fertility (Kour et al., 2020). The aim of the present study was to evaluate the potential of biofertilization to increase the production of polyphenolic compounds in forage sorghum, given that these secondary metabolites have potential anti-methanogenic activity.

### **Materials and Methods**

Four treatments were evaluated: the first consisted of a mixture (1:1.5:1.5) of Bacillus atrophaeus and Bacillus velezensis to achieve a final concentration of 1 × 10°CFU/ml, combined with Azospirillum brasilense (BA); the second treatment was Azospirillum brasilense (AZ); the third, Îrichoderma spp. (TRI); and the fourth, a combination of Azospirillum brasilense, Glomus spp., Trichoderma spp., Bacillus subtilis, Pseudomonas fluorescens, and Bacillus mucilaginosus (BH), containing 50 million CFU/g and at least 33 endomycorrhizal fungal spores per gram. Finally, a control group (T) was included. These treatments were applied to seven forage sorghum varieties: Cañaveral (CAÑAV), MXSE45 (MX45), Sureño (SUR), Tehua (TEH), Cañero (CAÑ), MXSE2 (MX2), and MXSE19 (MX19). The plant material was provided by the National Forestry, Agriculture and Livestock Research Institute (INIFAP, Rio Bravo Campus, Tamaulipas, Mexico) and analyzed using a factorial design to evaluate the effect of biofertilizers (first factor) and sorghum varieties (second factor) on morphoagronomic traits and polyphenol production.

The experiment conducted in the greenhouse of the Genomic Biotechnology Center at the National Polytechnic Institute (Reynosa, Tamaulipas, Mexico). One hundred seeds of each variety were sown in two pots filled with peat moss. Eight days after planting, germination percentage was determined by calculating the ratio of germinated plants to the total number of seeds sown. On days 20 and 56 after planting, twenty plants per treatment were measured for the following morphoagronomic parameters: plant height (cm), measured with a wooden ruler from the base to the highest point; stem diameter (mm), measured with a calibrated digital caliper; and photosynthetic activity (SPAD units), determined with a SPAD-502 PLUS chlorophyll meter (KONICA MINOLTA, INC.). Three additional plants per treatment were collected to evaluate metabolite concentrations on the same dates as the agronomic measurements.

For metabolite analysis, leaves were harvested and dried in an oven (Felisa Model FE-291) at 45°C for 24h. Then, 0.25g of dry tissue was weighed, mixed with 1ml of absolute ethanol, and left to stand for 30 min. The mixture was centrifuged at 5000 rpm for 10 min, and the leaf extract was collected and stored at -5°C until analysis.

The concentration of total phenols was determined using the Folin-Ciocalteu method (Dewanto et al., 2002; Singleton et al., 1999; Singleton and Rossi, 1965), and absorbance was measured in a UV-Vis spectrophotometer (UV-1800 Shimadzu) at 760nm. Tannin concentration was determined using the method of Broadhurst and Jones (1978). with absorbance measured at 500nm. Flavonoid concentration was assessed according to the method of Heimler et al. (2005), with absorbance measured at 510nm. All analyses were performed in triplicate using three dilutions (1:10, 1:100, and 1:1000). Phenol content was expressed as gallic acid equivalents (mg GAE/g dry matter), while flavonoid and tannin contents were expressed as catechin equivalents (mg CE/g dry matter). Data were analyzed using a factorial design, considering treatment and variety as fixed factors and their interaction; mean comparisons were performed using Tukey's test in RStudio (version 4.0.4).

#### Results

The germination percentage was evaluated eight days after

sowing. Significant statistical differences were found among varieties (p= 0.007), but not among treatments (p= 0.87) nor for the treatment-by-variety interaction (p= 0.88). Four of the seven varieties achieved germination percentages above 90%, while only the MX19 variety showed germination rates below 70%.

Significant differences were also observed in plant height, both for the main factors (treatment, p= 0.00774; variety, p= 7.849e-12) and for the treatment-by-variety interaction (p= 8.881e-07). The *Trichoderma* treatment showed the highest mean plant height (38.64cm), whereas the control group recorded the lowest average (34.1cm). The Tehua variety reached the greatest height (40.21cm), while the Cañero variety showed the lowest value (29cm). Figure 1 illustrates the full treatment–variety interactions for plant height.

The MX19 variety treated with BH recorded the greatest plant height (46.5cm). Three of the five tallest mean plant heights corresponded to varieties treated with *Trichoderma* spp. Conversely, the Cañero (CAÑ) variety without treatment showed the lowest value (26.6cm), and three of the five shortest averages were also from this variety.

Statistical differences were found in stem diameter for both main factors (treatment = 2.54e-09; variety, p = 0.00032) and for the treatment-by-variety interaction (p = 0.001131). Figure 2 presents the complete treatmentvariety interactions for stem diameter. Three of the five largest stem diameters were observed in plants treated with Trichoderma spp.; the CAÑAV variety reached the greatest value (2.65mm). Notably, the CAN variety, under two different treatments (TRI and AZ), appeared among the five best-performing combinations. On the other hand, the control group and the BA treatment showed the lowest average stem diameters. The SUR variety with the BA treatment exhibited the smallest stem diameter (1.45mm).

Finally, photosynthetic activity results are shown in Figures 3a and 3b. No significant interaction effect was detected between treatment and variety (p= 0.393), but significant differences were found for the main factors (treatment, p= 1.12e-07; variety, p= 9.40e-16). Regarding treatments, Trichoderma spp. recorded the highest photosynthetic activity (31.26 SPAD units), followed by AZ (30.89 SPAD units), while the control group showed the lowest mean value (27.84 SPAD units). Regarding varieties, MX19, MX45, MX2, and Tehua reached the highest averages (32, 31.6, 30.9, and 31.2 SPAD units, respectively), while

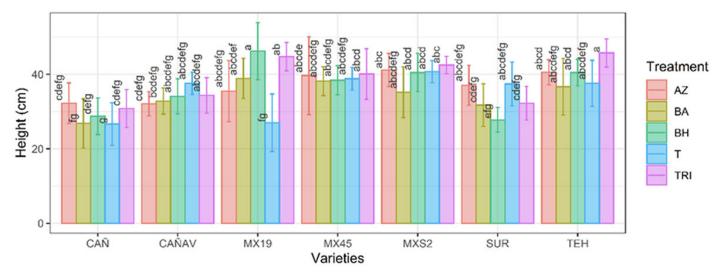



Figura 1. Plant height of seven varieties of forage sorghum subjected to different biofertilizers BA: Mix of Bacillus atrophaeus, Bacillus velezensis and Azospirillum brasilense; AZ: Azospirillum brasilense; TRI: Trichoderma spp.; BH: combination of Azospirillum brasilense, Glomus spp, Trichoderma spp, Bacillus subtilis, Pseudomonas flourescens, Bacillus mucilaginosus; T: control group.

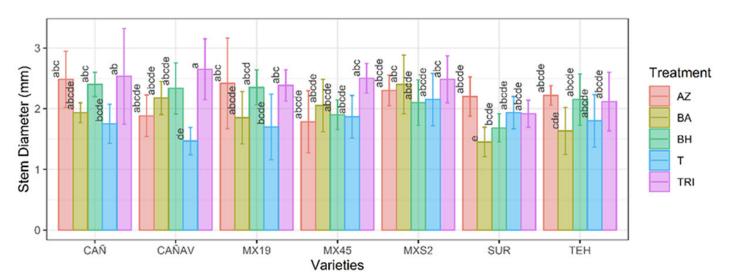



Figura 2. Steam diameter of seven varieties of forage sorghum subjected to different biofertilizers.

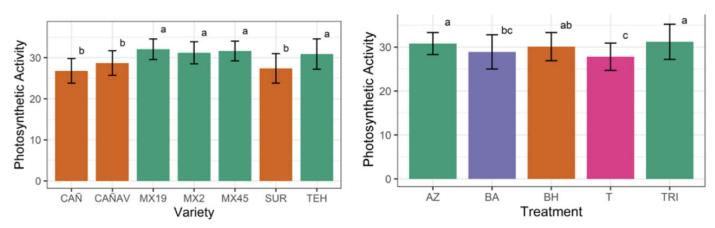



Figura 3. Average of photosynthetic activity for varieties (a) and treatments of forage sorghum subjected to different treatments (b).

CAÑAV, CAÑ, and SUR exhibited the lowest averages.

The determination of secondary metabolites —phenols, tannins, and flavonoids— was performed using spectrophotometric methods. Significant statistical differences were detected for both the main factors and their interaction (p < 2e-16). Tables I and II present the secondary metabolite contents at both sampling dates, organized by treatment and variety. Additionally, the treatment–variety interaction was analyzed.

Overall, plants treated with biofertilizers exhibited higher metabolite concentrations compared with the control group. Phenol levels increased consistently on day 56 compared with day 20, while tannins showed slightly higher values on day 56 than on day 20. Sorghum treated with *Trichoderma* spp. showed the highest phenol concentrations across all varieties. Phenolic content increased on the second sampling date; among the seven varieties studied, MX19 displayed the highest concentrations of phenols and flavonoids in both sampling periods (p < 2e-16) (Figures 4 and 5).

In general, Trichoderma treatment resulted in the highest phenol concentrations in the CAN, MX19, and varieties (26.5,MX2 26.3, 25.1GAE/g, respectively). The control treatment combined with the Tehua variety produced the lowest value (0.06 mg GAE/g). Figure 5 illustrates the full treatment-variety interactions for phenolic content on day 56. Similar to the first sampling, varieties treated Trichoderma spp. recorded the highest phenol levels; three of the five top-performing varieties (TEH, MX45, and MX19) showed averages above 40mg GAE/g. However, the MX19 variety achieved the highest mean value when treated with Azospirillum brasilense (59.09mg GAE/g), while the MX2-AZ combination recorded the lowest average (14.33mg GAE/g).

For flavonoids, detectable concentrations were found only at the 20-day sampling (Figure 6); by day 56, values were negligible. The treatment-variety interaction showed significant differences (p < 2e-16). Regarding tannins at the first sampling (20 days), the BA treatment in TEH and MX45 varieties showed the highest averages (52.4 and 10.8mg CE/g, respectively). It was also observed that 27 out of 35 treatment-variety combinations recorded no measurable tannin content (Figure 7). The CAN variety treated with the BH combination (bacteria and fungi) recorded the highest mean value (25.0mg CE/g). Five varieties treated with Azospirillum spp. were among the highest averages. By day 56, twenty treatment-variety combinations showed no detectable tannin content (Figure 8).

#### Discussion

Climate change is transforming ecosystems worldwide. To keep

the increase in global temperature below 2°C and avoid dangerous climate impacts, substantial reductions in greenhouse gas (GHG) emissions are urgently required (Gerber *et al.*, 2003). Livestock production is a major global source of GHGs. Depending on the methodology and emission categories considered, international

TABLE I
TOTAL PHENOL, TANNIN AND POLYPHENOL CONTENT OF SORGHUM
PLANTS TREATED WITH DIFFERENT BIOFERTILIZERS, AT 20 AND 56 DAYS
AFTER SOWING

| Time (days) | Treatments | Total phenols (mg GAE/g) | Flavonoids<br>(mg CE/g) | Tannins<br>(mg CE/g) |
|-------------|------------|--------------------------|-------------------------|----------------------|
| 20          | Control    | 10.00d                   | 6.75b                   | 0.0c                 |
|             | BA         | 10.4cd                   | 2.9e                    | 10.4a                |
|             | TRI        | 17.2a                    | 7.50a                   | 0.10c                |
|             | AZ         | 11.1c                    | 5.2c                    | 4.2b                 |
|             | ВН         | 13.4b                    | 4.1d                    | 0.1c                 |
| 56          | Control    | 22.8d                    | 0.0                     | 0.7 d                |
|             | BH         | 23.3d                    | 0.0                     | 5.6b                 |
|             | TRI        | 32.9a                    | 0.0                     | 0.0d                 |
|             | AZ         | 29.7b                    | 0.0                     | 13.5a                |
|             | BA         | 24.8c                    | 0.0                     | 2.9c                 |

Values with different letters have a statistically significant difference, according to Tukey's test (p < 0.05). BA: Mix of Bacillus atrophaeus, Bacillus velezensis and Azospirillum brasilense; AZ: Azospirillum brasilense, TRI: Trichoderma spp.; BH: combination of Azospirillum brasilense, Glomus spp, Trichoderma spp, Bacillus subtilis, Pseudomonas flourescens, Bacillus mucilaginosus); T: control group.

TABLE II
TOTAL PHENOL, TANNIN AND POLYPHENOL CONTENT OF SORGHUM
VARIETIES TREATED WITH DIFFERENT BIOFERTILIZERS, AT 20 AND 56
DAYS AFTER SOWING

| Time<br>(days) | Variety   | Total phenols (mg GAE/g) | Flavonoids (mg CE/g) | Tannins (mg CE/g) |
|----------------|-----------|--------------------------|----------------------|-------------------|
|                | Mxse19    | 15.0a                    | 6.4a                 | 1.3d              |
|                | Cañero    | 14.9a                    | 5.7b                 | 0.0f              |
| 20             | Mxse2     | 13.3b                    | 4.7cd                | 1.7c              |
|                | Tehua     | 7.1d                     | 4.2d                 | 10.5a             |
|                | Mxse45    | 13.8b                    | 5.2bc                | 2.2b              |
|                | Cañaveral | 8.9c                     | 6.5a                 | 0.1f              |
|                | Sureño    | 13.8b                    | 4.3d                 | 0.5e              |
| 56             | Mxse19    | 33.7a                    | 0.0                  | 4.6c              |
|                | Cañaveral | 21.5e                    | 0.0                  | 5.5b              |
|                | Sureño    | 25.9c                    | 0.0                  | 0.0d              |
|                | Tehua     | 31.1b                    | 0.0                  | 4.2c              |
|                | Cañero    | 23.9d                    | 0.0c                 | 13.0a             |
|                | Mxse45    | 25.7c                    | 0.0                  | 0.8d              |
|                | Mxse2     | 25.2c                    | 0.02b                | 3.8c              |

Values with different letters have a statistically significant difference, according to Tukey's test (p < 0.05).

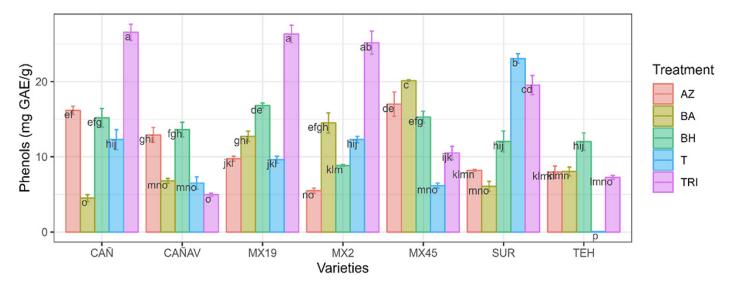



Figura 4. Treatment by variety interaction of forage sorghum for the phenol metabolite on day 20 of the treatment.

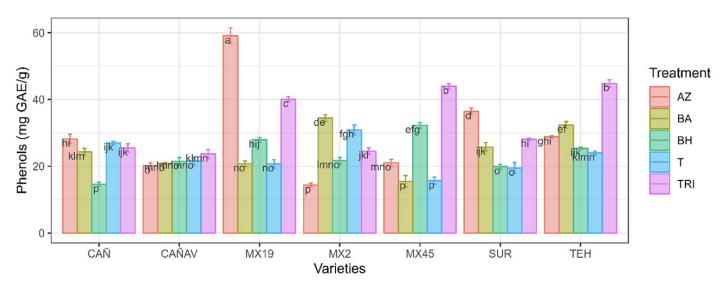



Figura 5. Treatment by variety interaction of forage sorghum for the phenol metabolite on day 56 of the treatment.

organizations (IPCC, FAO, EPA, among others) have estimated that cattle contribute between 7% and 18% of total anthropogenic GHG emissions worldwide (Hristov *et al.*, 2013). Methane (CH<sub>4</sub>) is generated primarily by the anaerobic decomposition of organic compounds in the bovine digestive tract and is released into the atmosphere mainly through enteric fermentation (burping).

Hristov *et al.* (2013) identified several strategies to mitigate this effect, including archaeal inhibitors such as bromochloromethane, electron acceptors such as nitrates, ionophores,

plant-derived metabolites, exogenous enzymes, defaunation, manipulation of ruminal microbiota, and improved grazing and feeding management. Within the latter category, silvopastoral systems -based on integrating trees or shrubs, legumes, and grasses into livestock feedinghave been studied as a sustainable option (Gutiérrez-Bermúdez and Mendieta-Araica, 2022). Silvopastoral systems aim to maximize resource-use efficiency, evaluate competitive interactions in perennial systems, and promote structural and functional diversity to conserve resources, enhance animal production, improve soil

fertility, and increase forage quality (Kour et al., 2020).

Mathematical models suggest that progressively eliminating the main global sources of  $CH_4$  and  $N_2O$  while allowing biomass to recover could achieve sustained reductions in  $CO_2$ -equivalent emissions over the next 30 years (Eisen and Brown, 2022). The present study evaluated the effect of biofertilizers on the production of secondary metabolites with anti-methanogenic potential and on the agronomic performance of forage sorghum; the latter aspect, if improved, could provide economic benefits for

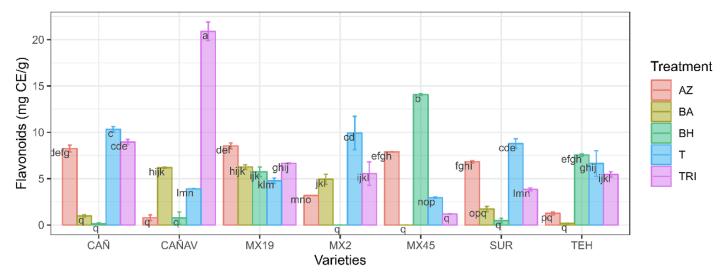



Figura 6. Treatment by variety interaction of forage sorghum for the metabolite flavonoids on day 20 of the treatment.

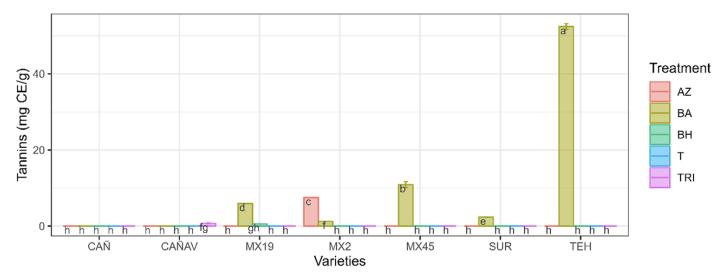



Figura 7. Treatment by variety interaction of forage sorghum for the metabolite tannins on day 20 of the treatment.

livestock producers and reduce the need for chemical fertilizers.

In general, the treatments applied in this study —based on bacteria, fungi, or their combinations—resulted in greater plant height, stem diameter, and photosynthetic activity in the different sorghum varieties compared with the control group. The treatment with Trichoderma spp. consistently produced higher values than the other treatments; TEH, MX19, and MX2 exhibited the greatest plant heights. Three of the topperforming varieties in terms of stem diameter were also treated with Trichoderma spp. (Figure 2). Similarly, this treatment showed the highest photosynthetic activity (31.26 SPAD units).

Additionally, the varieties MX19, Tehua, and MX45 recorded higher values in several agronomic parameters under different treatments. The physiological basis of these effects has been widely investigated, with rhizobacteria and cyanobacteria providing environmentally sustainable strategies to enhance crop growth and health (Singh et al., 2011). The mechanisms of action of these microorganisms include the production of siderophores, phytohormones and phosphate solubilization, and induction of plant resistance to biotic and abiotic stress (Santos et al., 2019). Kour et al. (2021) highlighted the ability of several genera—including Arthrobacter, Bacillus, Burkholderia, Natrinema, Pseudomonas, Rhizobium and Serratia— to solubilize phosphate, making it available to plants.

Among plant-growth-promoting rhizobacteria, *Azospirillum* spp. are widely studied; at least 21 species are recognized, with *Azospirillum brasilense* being the most extensively investigated. Its mechanism of action is primarily associated with the production of phytohormones, particularly indole-3-acetic acid (IAA) (Licea-Herrera *et al.*, 2020). Similarly, the fungus *Trichoderma* spp. is

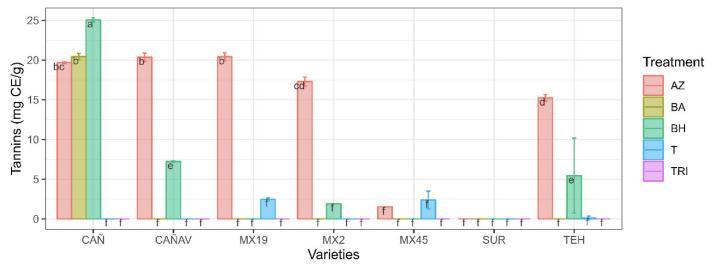



Figura 8. Treatment by variety interaction of forage sorghum for the metabolite tannins on day 56 of the treatment.

known to produce IAA and to degrade the seed episperm, participate in respiratory processes during germination, and act as an antagonist of several phytopathogenic fungi, making it a key microorganism for biofertilization (Mendoza *et al.*, 2011).

Successful use of different biofertilizers in forage production has been previously documented for rainfed maize, the grass *Brachiaria brizantha* (Hernández-Sánchez *et al.*, 2018), the legume *Lotus corniculatus* in high tropical areas (Santacoloma-Varón *et al.*, 2017), and hydroponically grown maize (Rangel *et al.*, 2014).

Regarding the role of metabolites in methane (CH<sub>4</sub>) mitigation, the first review of phenolic compounds in mammals by Singleton (1969) highlighted their potential toxic effects. Subsequently, several plant secondary metabolites have been shown to alter and suppress ruminal microbial populations. Lowry et al. (1996) reported that their effects range from occasional acute toxicity of hydrolyzable tannins to complex interactions between tannins and proteins. The diverse impacts of plant phenols on nutrient flow are likely explained by the balance between their adverse effects on some microorganisms and the rate at which they are degraded or inactivated by others. Manipulating ruminal microbial metabolism may therefore improve animal performance.

In this study, among the three metabolites analyzed, phenols were found in the highest concentrations and even increased at the second sampling

date. Fertilization with *Trichoderma* spp. resulted in significantly higher phenol values than all other treatments on both day 20 and day 56, with the latter showing the maximum concentration (32.94mg GAE/g). The MX19 variety also recorded the highest phenol concentrations on both sampling dates (Figures 4 and 5), differing significantly from the other treatments.

Plants with high polyphenol content are considered a potential strategy to reduce ruminal methane (CH<sub>4</sub>) emissions, although this may occur at the expense of nutrient utilization. However, non-additive effects may arise when phenol-rich plants are combined with nutrient-rich, highly digestible feeds (Jayanegara et al., 2013). Proper pasture management can provide young, highly digestible forage. Gurbuz (2009) reported reductions in total gas, methane, and carbon dioxide production in seven forage legume species, attributed to their condensed tannin content. This effect may result from enhanced fiber degradation as well as residual inhibition of methanogens.

Multiple factors influence methanogenesis, including the type of tannins and plant species. A higher number of hydroxyl groups is associated with greater methane reduction potential. Condensed tannins reduce methane primarily by limiting fiber digestion (an indirect effect), whereas hydrolyzable tannins appear to act directly by inhibiting methanogen growth and/or hydrogen availability (Goel and Makkar, 2012). Increasing concentrations of hydrolyzable tannins tested in goat

rumen fluid reduced methanogenesis (mL/250mg DM) without affecting other fermentation parameters, such as the acetate/propionate ratio and total volatile fatty acid production (Al-Jumaili *et al.*, 2017).

Similarly, the effect of Lotus pedunculatus on the ruminal methanogens Methanobrevibacter ruminantium strains YLM-1 and DSM1093 showed that condensed tannins can reduce methanogenesis both indirectly —by lowering hydrogen production and forage digestibility— and directly, through inhibitory effects on methanogens (Tavendale et al., 2005). Cushnie and Lamb (2005) reported the antimicrobial activity of flavonoids, such as quercetin, partly through inhibition of DNA gyrase. Other proposed mechanisms include disruption of cytoplasmic membrane function by sophoraflavanone G and epigallocatechin gallate, and inhibition of energy metabolism by licochalcones A and C. Flavonoids can therefore interact positively or negatively with ruminal microorganisms.

Broudiscou et al. (2002) examined extracts of 13 plants selected for high flavonoid content: Lavandula officinalis and Solidago virgaurea stimulated fermentation, while Equisetum arvense and Salvia officinalis decreased methanogenesis. Consequently, some flavonoid-containing plants may reduce methane production while stimulating microbial metabolism; however, the effects of flavonoids on ruminal protozoa remain unclear (Patra and Saxena, 2010).

The findings of this study suggest that biofertilization is a promising

strategy to increase secondary metabolite concentrations in forage, thereby indirectly reducing methane production in the rumen. This approach may complement other strategies aimed at mitigating greenhouse gas emissions from livestock production.

#### **ACKNOWLEDGMENTS**

The authors gratefully acknowledge the financial support provided by the Instituto Politécnico Nacional through project SIP-IPN 20201782.

#### REFERENCES

- Al-Jumaili WS, Goh YM, Jafari S, Rajion MA, Jahromi MF, Ebrahimi M (2017) An in vitro study on the ability of tannic acid to inhibit methanogenesis and biohydrogenation of C18 PUFA in the rumen of goats. *Annals of Animal Science* 17: 491–502. https://doi.org/10.1515/aoas-2016-0059.
- Broadhurst RB, Jones WT (1978) Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture 29: 788–794. https://doi.org/10.1002/jsfa.2740290908.
- Broudiscou LP, Papon Y, Broudiscou A F (2002) Effects of dry plant extracts on feed degradation and the production of rumen microbial biomass in a dual outflow fermenter. *Animal Feed Science and Technology* 101: 183–189.
- Cushnie TPT, Lamb A J (2005) Antimicrobial activity of flavonoids. *International Journal of Antimicrobial Agents* 26: 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002.
- Dewanto V, Xianzhong W, Adom KK, Liu R H (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. *Journal of Agricultural and Food Chemistry* 50: 3010–3014. https://doi.org/10.1021/jf0115589.
- Džermeikaitė K, Krištolaitytė J, Antanaitis R (2024) Relationship between dairy cow health and intensity of greenhouse gas emissions. *Animals* 14: 829. https://doi.org/10.3390/ani14060829.
- Eisen MB, Brown PO (2022) Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO2 emissions this century. *PLOS Climate 1*: e0000010. https:// doi.org/10.1371/journal.pclm.0000010.
- Fasusi OA, Cruz C, Babalola OO (2021) Agricultural sustainability: Microbial biofertilizers in rhizosphere management. *Agriculture 11*: 163. https://doi.org/10.3390/agriculture11020163.
- Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2003) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. Italy. 139 pp. https://www.fao.org/4/i3437e/i3437e00.htm.
- Goel G, Makkar HPS (2012) Methane mitigation from ruminants using tannins and saponins. *Tropical Animal Health and Production* 44: 729– 739. https://doi.org/10.1007/s11250-011-9966-2.
- Gurbuz Y (2009) Efectos del contenido de taninos condensados de algunas especies de

- leguminosas en la emisión de gas metano. Revista Cubana de Ciencia Agrícola 43: 265–272. http://www.redalyc.org/articulo.oa?id=193015481009.
- Gutiérrez Bermúdez C, Mendieta Araica BG (2022) Sistemas silvopastoriles: una alternativa para la ganaderia bovina sostenible. *La Calera* 22: 46–52. https://doi.org/10.5377/calera.v22i38.14193.
- Haque MN (2018) Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. *Journal of Animal Science and Technology 60*: 1–10. https://doi.org/10.1186/s40781-018-0175-7.
- Heimler D, Vignolini P, Dini MG, Romani A (2005) Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. *Journal of Agricultural and Food Chemistry* 53: 3053–3056. https://doi.org/10.1021/ jf049001r.
- Hernández-Sánchez L, Villegas-Aparicio Y, Carrillo-Rodríguez JC, Gómez-Vázquez A, Enriquez-Del Valle JR, Lozano-Trejo S, Hernández-Garay A (2018) Efecto de biofertilizantes microbianos en el crecimiento de *Brachiaria brizantha* (Trin) Griseb. *Agropoductividad 11*: 76–81. https://doi.org/10.22004/ag.econ.352908.
- Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang, W, Lee C, Gerber PJ, Henderson B, Tricarico J M (2013) Mitigation of methane and nitrous oxide emissions from animal operations: A review of enteric methane mitigation options. *Journal of Animal Science 91*: 5045–5069. https://doi.org/10.2527/jas.2013-6583.
- Jayanegara A, Marquardt S, Wina E, Kreuzer M, Leiber F (2013) In vitro indications for favorable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. *British Journal of Nutrition* 109: 615–622. https://doi. org/10.1017/S0007114512001742.
- Jose S, Walter D, Mohan KB (2019) Ecological considerations in sustainable silvopasture design and management. *Agroforestry Systems* 93: 317–331. https://doi.org/10.1007/s10457-016-0065-2.
- Kim E T, Guan LL, Lee SJ, Lee SM, Lee SS, Lee ID, Lee SK, Lee SS (2015) Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics Asian-Australasian. *Journal of Animal Sciences 28*: 530–537. https://doi.org/10.5713/ajas.14.0692.
- Kour D, Rana K, Kaur T, Yadav N, Yadav AN, Kumar M, Kumar V, Dhaliwal HS, Saxena AK (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a Review. *Pedosphere 31*: 43–75 https://doi.org/10.1016/S1002-0160(20)60057-1.
- Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology 23: 101487. https://doi.org/10.1016/j.bcab.2019.101487.
- Lan X, Dlugokencky EJ (2024) Atmospheric constraints on changing Arctic CH4 emissions. Frontiers. Environmental Science 12: 1382621. https://doi.org/10.3389/fenvs.2024.1382621.
- Licea-Herrera JL, Quiroz-Velásquez JDC, Hernández-Mendoza JL (2020) Impacto de

- Azospirillum brasilense, una rizobacteria que estimula la producción del ácido indol-3-acético como el mecanismo de mejora del crecimiento de las plantas en los cultivos agrícolas. Revista Boliviana de Química 37: 34–39. https://doi.org/10.34098/2078-3949.37.1.5.
- Lowry B, McSweeney CS, Palmer B (1996) Changing perceptions of the effect of plant phenolics on nutrient supply in the rumina. *Aust J Agric Res* 47: 829–871. https://doi.org/10.1071/AR9960829.
- Mendoza JL, Sánchez Pérez I, Olivares-García J, Mayek-Pérez N, González Prieto JM, Quiroz Velásquez, J D (2011) Caracterización molecular y agronómica de aislados de *Trichoderma* spp nativos del noreste de México. *Revista Colombiana de Biotecnología 13*: 176–185. http://www.scielo.org.co/scielo.php?script=sci\_arttext&pid=S0123-34752011000200017.
- Merino, P, Ramirez-Fanlo, E, Arriaga, H, del Hierro, O, Artetxe, A, Viguria, M (2011) Regional inventory of methane and nitrous oxide emission from ruminant livestock in the Basque Country. *Animal Feed Science and Technology 166–167*: 628–640. https://doi.org/10.1016/j.anifeedsci.2011.04.081.
- Moreno Reséndez, A, García Mendoza, V, Reyes Carrillo, JL, Vásquez Arroyo, J, Cano Ríos, P (2018) Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología 20: 68–83. https://doi.org/10.15446/rev.colomb.biote. v20n1.73707.
- Moscoso JEM, Franco F, San Martín H, Olazábal L, Chino LBV, Pinares-Patiño C (2017) Methane production in grazing cattle supplemented with silage, concentrate and tannins in the Peruvian highlands during the dry season. Revista de Investigaciones Veterinarias del Perú 28: 822–833. http://doi.org/10.15381/rivep.v28i4.13887.
- Patra AK, Saxena, J (2010) A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. *Phytochemistry* 71: 1198–1222. https://doi.org/10.1016/j.phytochem.2010.05.010.
- Rangel PP, García Hernández, J, Ángel, M, Castruita, S, Salas Pérez, L, Velia, A, Garay, A, Ramón, J, Rivera, E, Troyo Diéguez, E (2014) Effect of Vermicompost Lixiviate on the Production of Hydroponic Corn Forage. *Terra Latinoamericana 32*: 333–338. http://portal.chapingo.mx/terra/index.php?module=re sumenes&id=324333#.
- Santacoloma-Varón LE, Granados-Moreno JE, Aguirre-Forero SE (2017) Evaluación de variables agronómicas, calidad del forraje y contenido de taninos condensados de la leguminosa *Lotus corniculatus* en respuesta a biofertilizante y fertilización química en condiciones agroecológicas de trópico alto andino colombiano. *Entramado 13*: https://doi.org/10.18041/entramado.2017v13n1.25136.
- Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9: 205. https://doi.org/10.1186/s13568-019-0932-0.
- Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment 140: 339–353. https://doi.org/10.1016/j.agee.2011.01.017.

- Singleton, V L (1969) Toxicity and Related Physiological Activity of Phenolic Substances of Plant Origin. *Journal of Agriculture and Food Chemistry* 17: 497–512. https://doi. org/10.1021/jf60163a004.
- Singleton VL, Orthofer R, Lamuela-Raventos R (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. *Methods in Enzymology* 299: 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.

Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-

- phosphotungstic acid reagents. *American Journal of Enology and Viticulture 16*: 144–158. https://doi.org/10.5344/ajev. 1965.16.3.144.
- Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology 123-124: 403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037.
- Ungerfeld E M, Escobar-Bahamondes P I, Muñoz C (2018) Prediction and amelioration of methane emission from ruminants. Agro Productividad 11: 34-39. https://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/115.
- Vélez-Terranova M, Campos Gaona R, Sánchez-Guerrero H (2014) Use of plant secondary metabolites to reduce ruminal mathanogenesis. *Tropical and Subtropical Agroecosystems* 17: 489–499. http://dx.doi.org/10.56369/tsaes.2061.

## BIOFERTILIZACIÓN DE SORGO FORRAJERO PARA INCREMENTAR LOS NIVELES DE POLIFENOLES CON POSIBLE EFECTO ANTIMETANOGÉNICO

Arely Guerrero-De Lira, Cristian Lizarazo-Ortega, María Cristina Hernández-Jiménez, Régulo Ruíz-Salazar, José Hernández-Mendoza, Ana González-Pérez y Guadalupe Rodríguez-Castillejos

#### RESUMEN

El metano es uno de los principales gases que contribuyen al calentamiento global ya que atrapa más calor que el dióxido de carbono en la atmósfera; el ganado produce un porcentaje significativo de este gas, por lo que una alternativa viable es reducir la metanogénesis ruminal mediante una alimentación rica en polifenoles. En el presente estudio se evaluó el incremento de compuestos polifenólicos en sorgo forrajero, dado que este cultivo se utiliza comúnmente como alimento para el ganado. Se aplicaron cuatro tratamientos: una mezcla de Bacillus sp., Azospirillum brasilense, Trichoderma, una combinación de hongos y bacterias y un grupo control. Estos tratamientos se probaron en siete variedades de sorgo forraje-

ro cultivadas en México (Cañaveral, Sureño, MXSE45, Tehua, Cañero, MXSE2 y MXSE19). A los 20 y 56 días después de la siembra se midieron parámetros morfoagronómicos (altura de planta, diámetro de tallo y actividad fotosintética), así como las concentraciones de fenoles, flavonoides y taninos. La variedad MXSE19 presentó los valores más altos de altura, peso de planta y concentración de fenoles, siendo la combinación con Trichoderma la más efectiva. Las variedades Tehua y Cañero mostraron los valores más bajos en todos los tratamientos. El uso de biofertilizantes en forrajes representa una estrategia potencial para incrementar la concentración de polifenoles, compuestos con actividad antimetanogénica.

# BIOFERTILIZAÇÃO DE SORGO FORRAGEIRO PARA AUMENTAR OS NÍVEIS DE POLIFENÓIS COM POSSÍVEL EFEITO ANTIMETANOGÊNICO

Arely Guerrero-De Lira, Cristian Lizarazo-Ortega, María Cristina Hernández-Jiménez, Régulo Ruíz-Salazar, José Hernández-Mendoza, Ana González-Pérez e Guadalupe Rodríguez-Castillejos

#### **RESUMO**

O metano é um dos principais gases que contribuem para o aquecimento global, pois retém mais calor do que o dióxido de carbono na atmosfera; o gado produz uma porcentagem significativa desse gás, e uma alternativa viável é reduzir a metanogênese ruminal por meio de uma alimentação rica em polifenóis. No presente estudo avaliou-se o aumento de compostos polifenólicos em sorgo forrageiro, dado que essa cultura é comumente utilizada como alimento para o gado. Foram aplicados quatro tratamentos: uma mistura de Bacillus sp., Azospirillum brasilense, Trichoderma, uma combinação de fungos e bactérias e um grupo controle. Esses tratamentos foram testados em sete variedades de sorgo forrageiro

cultivadas no México (Cañaveral, Sureño, MXSE45, Tehua, Cañero, MXSE2 e MXSE19). Aos 20 e 56 dias após o plantio, foram medidos parâmetros morfoagronômicos (altura da planta, diâmetro do colmo e atividade fotossintética), bem como as concentrações de fenóis, flavonoides e taninos. A variedade MXSE19 apresentou os maiores valores de altura, peso da planta e concentração de fenóis, sendo a combinação com Trichoderma a mais eficaz. As variedades Tehua e Cañero mostraram os menores valores em todos os tratamentos. O uso de biofertilizantes em forragens representa uma estratégia potencial para aumentar a concentração de polifenóis, compostos com atividade antimetanogênica.