ECUACIONES ALOMÉTRICAS PARA ESTIMAR BIOMASA AÉREA DE CINCO ESPECIES DEL MATORRAL ESPINOSO TAMAULIPECO

José Israel Yerena Yamallel, Javier Jiménez Pérez, Pablo Marroquín Morales, Eduardo Alanís Rodríguez, Luis Gerardo Cuéllar Rodríguez y Oscar Alberto Aguirre Calderón

RESUMEN

Se generaron ecuaciones alométricas para estimar la biomasa aérea por componente y total para cinco especies del matorral espinoso tamaulipeco del noreste de México. Se utilizó el método directo que consiste en derribar el árbol, se cortaron 27 individuos para cada especie y con los datos obtenidos se calculó la relación peso seco - peso verde promedio para cada componente. Para obtener la biomasa, se multiplicó el peso verde total de las hojas, ramas y fuste por su relación de peso seco a húmedo. Se probaron seis ecuaciones lineales y no lineales, las cuales se ajustaron con el método de cuadrados mínimos. El modelo potencial es el que mejor se ajustó para las especies de Eysenhardtia texana ($R^2 = 0.96$), Havardia pallens $(R^2 = 0.99)$ y Acacia farnesiana $(R^2 = 0.99)$; sin embargo, para Acacia rigidula y Diospyros texana se ajustó el modelo de la variable combinada, con R^2 = 0,98 y 0,99 respectivamente. El diámetro basal y la altura son variables que predicen eficientemente la biomasa en hojas, ramas, fuste y total. La utilización de modelos específicos para una especie en particular en un área determinada con condiciones climáticas locales genera una mejor estimación de la biomasa.

Introducción

La biomasa es definida como el peso verde o seco de materia orgánica que existe en un árbol, población, comunidad o ecosistema por encima y por debajo del suelo, y normalmente es un buen indicador de la productividad forestal (Picard et al., 2012). Es frecuente separarla por componentes, donde los más comunes corresponden a la biomasa del fuste, ramas, hojas, corteza y raíces (Brown, 1997; Návar, 2010; Kim et al., 2017; Vargas-Larreta et al., 2017; He et al., 2018).

La estimación de la biomasa de un ecosistema es un elemento de gran importancia, debido a que esta permite estimar los contenidos de carbono y otros elementos biogeoquímicos

presentes en cada uno de sus biomasa, diámetro, altura, cocomponentes; además, constituye la cantidad potencial de carbono que puede ser emitido a la atmósfera, o conservado en una determinada superficie (McKechnie et al., 2011; Whitehead, 2011; Pompa-García y Jurado, 2015; Mayaka et al., 2017).

Existen métodos directos e indirectos para estimar la biomasa de los árboles. El primero consiste en cortar el árbol y pesar la biomasa directamente, determinando su peso seco (Brown, 1997; Návar, 2010). Una forma para estimar la biomasa con el método indirecto es a través de ecuaciones matemáticas, generadas por medio de análisis de regresión lineal y no lineal en forma individual o aditiva entre las variables de

bertura y densidad específica (Brown, 1997; Chave et al., 2005; Návar, 2010). En México se han utilizado numerosas ecuaciones alométricas para estimar la biomasa de una gran variedad de especies de árboles o parcelas forestales (Návar, 2009; Rojas-García et al., 2015). La implementación en conjunto de ambas técnicas es la forma convencional de cuantificar la materia orgánica (Abich et al., 2018; Kebede y Soromessa, 2018).

El matorral espinoso tamaulipeco (MET) se localiza en el noreste de México, en una superficie de 3.247.453,26ha que corresponde al 2.4% del área forestal nacional. Si bien su formación tiene una distribución limitada, es un ecosistema

denso con una importante riqueza de especies, con un 73% de vegetación primaria, por lo que presenta un estado de conservación con una alteración moderada (CONAFOR, 2018).

La distribución de diversidad-dominancia en el MET se caracteriza porque existe un pequeño número de especies abundantes y una gran proporción de especies con bajas densidades; se reportan 21 especies, distribuidas en 20 géneros y 14 familias. Las especies con mayor importancia por su contribución estructural a la comunidad son Acacia rigidula, Diospyros texana y Havardia pallens (Mora et al., 2013); aunque la diversidad-abundancia cambia con la posición geomorfológica del paisaje (Návar et al., 2014).

PALABRAS CLAVE / Biomasa Aérea / Ecuaciones Alométricas / Matorral Espinoso /

Recibido: 18/07/2019 Modificado: 13/08/2020. Aceptado: 17/08/2020.

José Israel Yerena Yamallel. Ingeniero Forestal, Maestro en Ciencias Forestales y Doctor en Ciencias en Manejo de Recursos Naturales, Universidad Autónoma de Nuevo León (UANL), México. Profesor Investigador, UANL, México. Dirección: Facultad de Ciencias Forestales, UANL. Carretera Nacional km 145, CP 67700, Linares, Nuevo León, México.

e-mail: israel.yerena@gmail. com.

- Javier Jiménez Pérez. Ingeniero Agrónomo, Universidad Autónoma Agraria Antonio Narro (UAAAN), México. Doctor en Ciencias Forestales, Universität Göttingen, Alemania. Profesor Investigador, UANL, México.
- Pablo Marroquín Morales. Ingeniero Forestal, UAAAN, México. Maestro en Ciencias

Forestales, UANL, México. Profesor Investigador, Universidad Autónoma de Chiapas, México.

- Eduardo Alanís Rodríguez. Ingeniero Forestal, Maestro en Ciencias Forestales y Doctor en Ciencias en Manejo de Recursos Naturales, UANL, México. Profesor Investigador, UANL, México.
- Luis Gerardo Cuéllar Rodríguez. Ingeniero Forestal y Maestro en Ciencias Forestales, UANL,

México. Doctor en Ciencias en Fitosanidad - Entomología y Acarología, Colegio de Postgraduados, México. Profesor Investigador, UANL, México.

Oscar Alberto Aguirre Calderón. Ingeniero Agrónomo, Autónoma Universidad Chapingo, México. Doctor en Ciencias Forestales, Universität Göttingen, Alemania. Profesor Investigador, UANL, México.

ALLOMETRIC EQUATIONS TO ESTIMATE ABOVE-GROUND BIOMASS OF FIVE SPECIES OF TAMAULIPAN THORNSCRUB

José Israel Yerena Yamallel, Javier Jiménez Pérez, Pablo Marroquín Morales, Eduardo Alanís Rodríguez, Luis Gerardo Cuéllar Rodríguez and Oscar Alberto Aguirre Calderón

SUMMARY

Allometric equations were generated to estimate the aboveground biomass by component and total for five species of the tamaulipan thornscrub of Northeastern Mexico. The direct method of felling the tree was used, 27 individuals were cut for each species and with the obtained data, the average dry weight to green weight ratio was calculated for each component. To obtain the biomass, the total green weight of leaves, branches and stem was multiplied by the ratio of dry to wet weight. Six linear and non-linear equations were tested and adjusted using the least squares method. The potential model is the one that best adjusted for the species Eysenhardtia texana ($R^{2}=0.96$), Havardia pallens ($R^{2}=0.99$) and Acacia farnesiana ($R^{2}=0.99$); however, for Acacia rigidula and Diospyros texana the combined variable model was adjusted with $R^{2}=0.98$ and 0.99, respectively. Base diameter and height are variables that efficiently predict biomass in leaves, branches, stem and total. The use of specific models for a particular species in a given area with local climatic conditions generates a better estimate of biomass.

EQUAÇÕES ALOMÉTRICAS PARA ESTIMAR A BIOMASSA AÉREA DE CINCO ESPÉCIES DO ARBUSTO ESPINHOSO EM TAMAULIPAS

José Israel Yerena Yamallel, Javier Jiménez Pérez, Pablo Marroquín Morales, Eduardo Alanís Rodríguez, Luis Gerardo Cuéllar Rodríguez e Oscar Alberto Aguirre Calderón

RESUMO

Equações alométricas foram geradas para estimar a biomassa aérea por componente e total para cinco espécies do arbusto espinhoso em Tamaulipas no nordeste do México. Utilizou-se o método direto que consiste em derrubar a árvore, foram cortados 27 indivíduos para cada espécie e com os dados obtidos foi calculada a relação peso seco - peso verde médio de cada componente. Para obter a biomassa, foi multiplicado o peso verde total das folhas, galhos e caule pela relação de peso seco e úmido. Foram testadas seis equações lineares e não lineares, as quais foram ajustadas com o método dos mínimos quadrados. O modelo potencial é o que melhor se ajusta para as espécies de Eysenhardtia texana (R^2 = 0,96); Havardia pallens (R^2 = 0,99) e Acacia farnesiana (R^2 = 0,99); no entanto, para Acacia rigidula e Diospyros texana se ajustou o modelo da variável combinada, com R^2 = 0,98 e 0,99 respectivamente. Diâmetro basal e altura são variáveis que predizem com eficiência a biomassa em folhas, galhos, caule e total. A utilização de modelos específicos para uma espécie em particular, de um determinado setor e com condições climáticas locais, gera uma melhor estimativa da biomassa.

El objetivo del trabajo fue generar parámetros de ecuaciones alométricas que permitan estimar la biomasa aérea por componente y total para cinco especies del matorral espinoso tamaulipeco adaptados a los factores climáticos actuales, los cuales afectan a la productividad dado que el crecimiento de la vegetación responde a las condiciones meteorológicas locales.

Materiales y Métodos

Áreas de estudio

El estudio se realizó en una fracción del matorral espinoso tamaulipeco de la Planicie Costera del Golfo en el municipio de Linares, Nuevo León, México, situado entre 25°09' y 24°33'N y entre 99°54' y 99°07'O, en una altitud de 350msnm. En el área se realizó una matarasa, superficie desmontada con fines de investigación utilizando la técnica del cadeneo (consiste en arrastrar una cadena de ancla de barco de 40 a 60m de largo que pesa 4 a 5Mg, jalada por dos tractores de oruga), no se realizó ninguna actividad silvoagropecuaria posterior y tiene 35 años de regeneración natural. El clima es clasificado como (A)C(x')(w")a(e), que corresponde a un clima semicalido - subhúmedo básicamente debido a la posición geográfica transicional en la zonas áridas y subtropical de altas presiones, con influencia de los vientos alisios húmedos y vientos fríos del norte durante el invierno. La precipitación pluvial anual oscila entre 400 y 1850mm, con un valor promedio de 805mm v desviación estándar de 260mm. La temperatura promedio anual es de 22,4°C con temperaturas >40°C en

verano y <0°C en invierno. Los suelos de la zona corresponden a un típico vertisol de origen aluvio-coluvial.

Metodología de campo

De acuerdo con trabajos realizados en el área de estudio, se seleccionaron las cinco especies leñosas con mayor peso ecológico (Alanís *et al.*, 2008; Jiménez *et al.*, 2009) para la presente investigación (Tabla I). Diseño de muestreo y tamaño de la muestra

El método empleado consideró la tabla de frecuencias de clases diamétricas para determinar el número de individuos a muestrear por especie, asegurando al menos un individuo de cada especie por cada clase diamétrica con frecuencia de al menos tres individuos, para lo cual se realizó un inventario de diez sitios rectangulares de muestreo de 250m² cada uno. Para

r	TABLA I
ESPECIES	SELECCIONADAS

Nombre científico	Nombre común
Acacia rigidula Benth.	Gavia
Eysenhardtia texana Scheele	Vara dulce
Acacia farnesiana Willd.	Huizache
Diospyros texana Scheele	Chapote
Havardia pallens Britton et Rose	Tenaza

cuantificar la biomasa se utilizó el método directo, que consiste en derribar el árbol. Se cortaron 27 árboles para cada especie. Es importante destacar que el muestreo de estos individuos se realizó de forma selectiva, considerando aspectos de uniformidad de exposición, libres de competencia por luz, estar libres de enfermedades y de daños mecánicos en su estructura.

Colecta de las muestras

Una vez seleccionados los individuos se realizaron dos tipos de mediciones, unas en pie y otras una vez derribado. Previo al corte se registró para cada árbol: número, especie, diámetro basal a 0,1m y altura total; identificado el árbol o arbusto a procesar se señaló la zona de caída de éste y se determinó la zona de procesado con el fin de habilitarlo para el trabajo. A continuación se describen los pasos realizados: a) derribo del individuo, realizando el corte lo más cerca posible del suelo; b) desrame y trozado, en el que los árboles y arbustos fueron divididos en sus componentes aéreos: fuste, ramas y hojas, determinando el peso verde total de cada componente; c) colecta de muestras, donde para cada componente se extrajeron cuatro submuestras y se determinó el peso verde en campo. Para el fuste se seleccionaron las muestras de madera de la sección radial a 0,10m; a 1,3m; en medio y en la ápice; se empaquetó en una bolsa de papel y se identificó la especie, número de individuo y de muestra (esta nomenclatura se utilizó para todas las muestras). Para ramas y hojas se obtuvieron muestras en los cuatro puntos cardinales de la copa. Todas las submuestras se llevaron a laboratorio v se colocaron en una estufa marca Riossa a 105°C hasta obtener su peso constante. Finalmente, se pesaron en seco con una báscula digital (Es-Series-ES6R) de 2kg de capacidad y 1g de precisión.

Con los datos obtenidos se calculó la relación peso seco peso verde promedio para cada componente. A fin de obtener la biomasa por componente, se multiplicó el peso verde total de cada componente (hojas, ramas y fuste) por la relación correspondiente. Para obtener la biomasa total por árbol se sumó el peso seco de cada componente.

Ajuste y selección del modelo

Se probaron ecuaciones lineales y no lineales (Tabla II) que han sido utilizadas frecuentemente en trabajos de alometría en la región (Rodríguez et al., 2009; Méndez-González et al., 2011) para la estimación de biomasa en hojas, ramas, fuste y total, las cuales se ajustaron con el método de cuadrados mínimos, mediante el paquete estadístico R Project (R Core Team, 2018). Para seleccionar la mejor ecuación se tomaron criterios tales como el mayor coeficiente de determinación (R²), el menor error estándar (S_{vx}) y su significancia P≤0,05 en cada uno de sus parámetros de regresión por modelo.

Resultados y discusión

Características dasométricas

De acuerdo con los árboles muestreados, el individuo con menor diámetro se presentó en Havardia pallens con 2,6cm y el de mayor dimensión fue en Acacia farnesiana, con 11cm. El rango de mayor variación en la variable altura resultó en la especie H. Pallens, desde 1.8m hasta 5,5m. Las ramas en tres especies presentaron valores superiores de biomasa a los demás componentes, siendo el intervalo de 12,1 a 15,2kg. A. farnesiana obtuvo la biomasa total máxima

con 24,6kg, y la menor se presentó en H. pallens con 0,9kg (Tabla III). El patrón de distribución de la biomasa para especies del MET fue diferente al reportado por Northup et al. (2005) y He et al. (2018), y similar al de Návar et al. (2002).

Coeficientes de regresión

Los coeficientes de regresión resultaron significativos (P≤0,05) para el modelo 3 en las especies Acacia rigidula y Diospyros texana y para el resto de las especies fueron significativos en el modelo 1. Esta significancia se presentó para cada uno de los componentes: hojas, ramas, fuste y total. El modelo 3 presentó cierta similitud en los coeficientes de regresión, respecto a las pendientes de $\beta 1 = 0,046$ y 0,037 en biomasa total para A. rigidula y D. texana. Las especies Havardia pallens y Acacia farnesiana presentaron valores en el parámetro β1 de 2,207 y 2,323 para el compartimento de biomas total (Tabla IV).

Estadísticos de ajuste

Respecto a los criterios de decisión se seleccionó los modelos 1 y 3, los cuales estiman adecuadamente la biomasa en cada uno de los componentes. El modelo 3 (BA= $\beta_0 + \beta_1 d^2 h$) es aplicado para Acacia rigidula y Diospyros texana, y para el resto de las especies el modelo 1 (BA= $\beta_0 d^{\beta_1}$). Los estadísticos de ajuste de las ecuaciones indican una mejor eficiencia para estimar la biomasa al considerar el total en comparación con los componentes independientes. similar a lo reportado en diferentes estudios (Návar et al.,

MODELOS PARA LA ESTIMACIÓN DE BIOMASA AÉREA Nombre del modelo Ecuación N° Potencial $BA = \beta_0 d^{\beta_1}$ 1 $BA = \beta_0 + \beta_1 d^2$ 2 Kopezky 3 Variable combinada $BA = \beta_0 + \beta_1 d^2 h$ Variable combinada generalizada $BA = \beta_0 + \beta_1 d^2 + \beta_2 h + \beta_3 d^2 h$ 4 5

TABLA II

Meyer modificada $BA = \beta_0 + \beta_1 d + \beta_2 d h + \beta_3 d^2 h$ Australiana $BA = \beta_0 + \beta_1 d + \beta_2 h + \beta_3 d^2 h$

BA: biomasa aérea (kg), β_0, \ldots, β_3 : coeficientes de regresión, d: diámetro normal del árbol (cm), h: altura total (m).

TABLA III CARACTERÍSTICAS DASOMÉTRICAS

CARACTERISTICAS DASOMETRICAS												
P :	Db		Н		BH		BR		BF		BA	
Especie	Mín	Máx	Mín	Máx	Mín	Máx	Mín	Máx	Mín	Máx	Mín	Máx
Acacia rigidula	3,3	7,0	2,7	5,4	0,6	0,8	1,1	6,8	0,3	7,8	2,0	13,2
Havardia pallens	2,6	10,2	1,8	5,5	0,1	1,2	0,3	12,4	0,5	12,3	0,9	23,9
Diospyros texana	3,3	10,5	1,8	5,3	0,3	2,4	1,0	15,2	0,3	5,0	1,9	22,7
Eysenhardtia texana	3,1	10,7	3,6	5,4	0,2	1,0	1,5	7,2	1,2	7,2	3,1	15,5
Acacia farnesiana	4,3	11,0	2,2	5,2	0,3	2,8	1,2	12,1	0,6	10,6	2,7	24,6

Db: diámetro basal (cm), H: altura (m), BH: biomasa de hojas (kg), BR: biomasa de ramas (kg), BF: biomasa de fuste (kg), BA: biomasa aérea (kg), Mín: mínimo, Máx: máximo.

6

TABLA IV COEFICIENTES DE REGRESIÓN

			Но	ojas			Ra	imas		Fuste			Total				
sp.	Μ	β0	β1	β2	β3	β0	β1	β2	β3	β0	β1	β2	β3	β0	β1	β2	β3
	1	0,340*	0,399*	,	,	0,105	2,038*	,	,	0,008	3,452*	,	,	0,107*	2,443*	,	,
1	2	0,508*	0,005*	,	,	-0,006	0,113*	,	,	-1,589*	0,150*	,	,	-1,087*	0,268*	,	,
	3	0,548*	0,001*	,	,	0,947*	0,019*	,	,	-0,326*	0,026*	,	,	1,169*	0,046*	,	,
Ar	4	0,755*	-0,006	-0,058	0,002*	-1,063	0,023	0,676	0,009	-0,707	0,009	0,113	0,023	-1,016	0,026	0,732	0,034
	5	0,715*	-0,027	-0,010	0,003	-0,389	-0,057	0,219	-0,006	-0,400	0,066	-0,022	0,028	-0,074	-0,019	0,186	0,024
sp. Ar Hp Dt Et Af	6	0,790*	-0,041	-0,039	0,002*	-1,401	0,220	0,600	0,010	-0,683	0,040	0,083	0,025	-1,293	0,219	0,644	0,036
	1	0,044*	1,391*	,	,	0,057*	2,270*	,	,	0,062*	2,247*	,	,	0,141*	2,207*	,	,
	2	0,164*	0,010*	,	,	-0,704	0,112*	,	,	-0,409	0,111*	,	,	-0,950*	0,233*	,	,
Un	3	0,253*	0,002*	,	,	0,268	0,019*	,	,	0,467	0,019*	,	,	0,988	0,040*	,	,
Πp	4	-0,009	0,025	0,015	-0,003	-0,208	0,169	-0,327	-0,008	-0,190	-0,234*	0,892	0,055*	-0,408	-0,040	0,580*	0,044*
	5	-0,346	0,231	-0,025	0,001	-2,878	1,421	-0,206	0,019*	4,231*	-2,084*	0,388*	0,012	1,008	-0,433	0,157*	0,032*
	6	-0,149	0,193	-0,102	0,000	-1,271	1,413	-1,216	0,008	1,187	-1,862*	2,040*	0,032*	-0,233	-0,256	0,722*	0,040*
	1	0,037*	1,762*	,	,	0,031	2,643*	,	,	0,104*	1,648*	,	,	0,115*	2,246	,	,
	2	0,149	0,020*	,	,	-1,465	0,147*	,	,	0,332	0,044*	,	,	-0,984*	0,210*	,	,
Dt	3	0,318*	0,003*	,	,	-0,203*	0,026*	,	,	0,695*	0,008*	,	,	0,810*	0,037*	,	,
Di	4	0,527	0,001	-0,071	0,004	1,988*	0,005	-0,715*	0,028*	-1,140	0,034	0,493*	0,000	1,376*	0,040	-0,293*	0,032*
sp. Ar Hp Dt Et Af	5	0,590	-0,014	-0,021	0,005*	0,829	0,208	-0,178*	0,038*	-1,073	0,208	0,095*	-0,003	0,345	0,402*	-0,104*	0,041*
	6	0,768	-0,064	-0,066	0,005*	2,591*	-0,151	-0,709*	0,031*	-1,970	0,409	0,354*	0,001	1,388*	0,194	-0,422*	0,037
	1	0,100*	0,988*	,	,	0,441*	1,181*	,	,	0,345*	1,275*	,	,	0,877*	1,208*	,	,
	2	0,302*	0,007*	,	,	1,529*	0,052*	,	,	1,269*	0,053*	,	,	3,100*	0,112*	,	,
Ft	3	0,335*	0,001*	,	,	1,794*	0,009	,	,	1,519*	0,010	,	,	3,648*	0,020*	,	,
Li	4	-0,771*	0,007	0,272*	-0,001	-1,079	0,210*	0,470	-0,030	-3,688*	-0,005	1,326*	0,007	-5,538*	0,212*	2,068*	-0,024
	5	0,177	-0,174	0,062*	-0,001	-0,860	1,031	-0,069	0,002	0,951	-0,949	0,311*	-0,002	0,268	-0,092	0,304*	-0,002
	6	-0,733*	0,021	0,253*	0,000	0,038	0,804*	-0,245	0,000	-3,727*	0,030	1,304*	0,006*	-4,422*	0,855*	1,311*	0,006
	1	0,023*	1,925*	,	,	0,117*	1,948*	,	,	0,004*	3,228*	,	,	0,093*	2,323*	,	,
	2	0,031	0,019*	,	,	0,025	0,104*	,	,	-1,642*	0,086*	,	,	-1,585*	0,210*	,	,
Af	3	0,315*	0,003*	,	,	1,532*	0,018*	,	,	-0,434	0,015*	,	,	1,414*	0,037*	,	,
11	4	-0,083	0,033	-0,027	-0,002	-1,582	0,102*	0,587	-0,002	2,404	-0,035	-0,832*	0,025*	0,740	0,099*	-0,273*	0,021*
	5	-0,829	0,322	-0,031	0,002	-3,048	0,937*	0,028	0,005	1,874	-0,157	-0,151	0,029*	-2,004	1,102*	-0,155*	0,037*
	6	-0,520	0,288	-0,173	0,001	-3,302*	1,006*	0,080	0,006	3,301	-0,441	-0,612	0,023*	-0,522	0,854*	-0,705*	0,030*

sp: especie, Ar: Acacia rigidula, Hp: Havardia pallens, Dt: Diospyros texana, Et: Eysenhardtia texana, Af: Acacia farnesiana, M: modelo, $\beta 0...\beta$ 3: coeficientes de regresión, * parámetros significativos (P \leq 0,05).

2002; Northup et al., 2005; Kim et al., 2017; He et al., 2018) a pesar de que estos trabajos independientes, junto con el presente, siguen representando solo una muestra de la población (Návar, 2010). Por ejemplo, al colectar árboles con los diámetros máximos extremos, la relación biomasa aérea vs diámetro tiende a curvear más y los modelos no lineales simples con parámetros calculados en algunas de las técnicas como Newton, Gaus, Marquardat, entre otros, arrojarán estadísticos diferentes. Las especies A. farnesiana y D. texana presentaron los valores más altos en coeficiente de determinación con un R^2 promedio de 0.90 v 0.89 respectivamente. Eysenhardtia texana, Havardia pallens y A. rigidula obtuvieron los R² promedio menores con

0,87; 0,86 y 0,81 respectivamente (Tabla V).

Las ecuaciones del presente trabajo resultaron con un mejor ajuste que las reportadas por Návar et al. (2002), con R² entre 0,72 y 0,94; de igual manera que las reportadas por Návar et al. (2004) con R² de 0,92; 0,79; 0,89; 0,74 y 0,95 para A. rigidula, H. pallens, D. texana, E. texana y A. farnesiana, respectivamente. Northup et al. (2005) mencionan para Â. rigidula \mathbb{R}^2 de 0,90 y para D. texana de 0,92. Para A. rigidula el valor de R² fue similar al citado por Návar et al. (2002) de 0,98.

Representación de la biomasa por componente

El mejor modelo ajustado para cada uno de los componentes y para las especies *Acacia rigidula*

y Diospyros texana se representó con el modelo de la variable combinada donde se emplea el diámetro basal (cm) y la altura (m), lo cual concuerda con Návar et al. (2002, 2004) y con Bhandari y Neupane (2015). Para los casos de Eysenhardtia texana, Havardia pallens y Acacia farnesiana el modelo potencial es una ecuación no lineal y ocupa una variable independiente el diámetro a la base (cm), similar a las ecuaciones alométricas desarrolladas por varios autores (Návar et al., 2002; Northup et al., 2005; Muturi et al., 2011; Mokria et al., 2018).

Los diagramas de dispersión muestran que los puntos cercanos a la línea confirman que las ecuaciones proporcionaron un buen ajuste a los datos de las especies (Figura 1). Con respecto a la relación entre la

biomasa y las variables diámetro y altura en las especies, se determinó el mismo comportamiento conforme aumenta una se incrementa la otra, enfatizando la importancia del muestreo selectivo en su rango diamétrico. En futuros trabajos hace falta contabilizar la dispersión en cada uno de los diámetros para estimar coeficientes más robustos para toda la población (Návar, 2010). Los individuos con los mismos valores en las variables dasométricas de diferentes especies resultan con diferentes valores de biomasa.

Errores de estimación con el modelo 1

Las especies Eysenhardtia texana, Havardia pallens y Acacia farnesiana presentaron TABLA V STADÍSTICOS DE AIUSTE

		ES	STADIST	ICOS DE	E AJUST	E				
		Hojas		Ra	mas	Fu	ıste	Total		
sp.	Modelo	\mathbb{R}^2	Syx	R ²	Syx	R ²	Syx	R ²	Syx	
	1	Hojas Ramas Fu R ² Syx R ² Syx R ² 0,56 0,05 0,73 0,75 0,78 0,66 0,04 0,73 0,75 0,76 0,73 0,04 0,75 0,73 0,79 0,76 0,04 0,75 0,75 0,79 0,76 0,04 0,75 0,75 0,79 0,76 0,04 0,75 0,75 0,79 0,76 0,04 0,75 0,75 0,79 0,76 0,04 0,75 0,75 0,79 0,76 0,04 0,75 0,75 0,79 0,76 0,15 0,87 1,20 0,82 0,74 0,16 0,87 1,23 0,86 0,76 0,16 0,87 1,23 0,86 0,76 0,16 0,87 1,24 0,86 0,79 0,24 0,97 0,61 0,77 0,80<	0,87	0,96	0,62					
	2	0,66	0,04	0,73	0,75	0,76	0,91	0,95	0,67	
	3	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,98	0,41						
Acacia rigidula	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0,79	0,90	0,98	0,42					
	5	0,76	Hojas Ramas Fuste Tota Syx R2 Syx R2 Syx R2 5 0,05 0,73 0,75 0,78 0,87 0,96 5 0,04 0,73 0,75 0,76 0,91 0,95 3 0,04 0,75 0,73 0,79 0,86 0,98 5 0,04 0,75 0,75 0,79 0,90 0,98 5 0,04 0,75 0,75 0,79 0,90 0,98 5 0,04 0,75 0,75 0,79 0,90 0,98 5 0,15 0,87 1,20 0,82 1,44 0,99 4 0,16 0,87 1,23 0,86 1,30 0,99 5 0,16 0,87 1,24 0,86 1,32 0,99 5 0,16 0,87 1,21 0,87 1,28 0,99 0 0,24 0,97 0,61 <td>0,42</td>	0,42						
	6	0,76	0,04	0,75	0,75	0,79	0,90	0,98	0,42	
	1	0,75	0,15	0,87	1,20	0,82	1,44	0,99	0,64	
	2	0,74	0,16	0,87	1,19	0,81	1,45	Total R² S 0,96 0, 0,95 0, 0,98 0, 0,98 0, 0,98 0, 0,98 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,97 0, 0,97 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0, 0,99 0,	0,66	
TT 1. 11	3	0,71	0,17	0,86	1,23	0,84	1,36		0,42	
Havardia pallens	4	0,76	0,16	0,87	1,23	0,86	1,30		0,31	
	5	0,76	0,16	0,87	1,24	0,86	FusteTotal R^2 Syx R^2 Syx $1,78$ 0,870,960,62 $1,76$ 0,910,950,67 $1,79$ 0,860,980,41 $1,79$ 0,900,980,42 $1,79$ 0,900,980,42 $1,79$ 0,900,980,42 $1,79$ 0,900,980,42 $1,79$ 0,900,980,42 $1,79$ 0,900,980,42 $1,79$ 0,900,980,42 $1,82$ 1,440,990,66 $1,84$ 1,360,990,31 $1,86$ 1,320,990,32 $1,78$ 0,560,990,44 $1,79$ 0,550,990,32 $1,78$ 0,560,990,44 $0,79$ 0,550,990,27 $1,88$ 0,610,960,71 $1,87$ 0,620,990,27 $1,88$ 0,610,960,71 $1,87$ 0,560,970,66 $0,91$ 0,560,970,68 $0,91$ 0,560,970,68 $0,88$ 0,830,990,22 $0,88$ 0,880,990,22 $0,88$ 0,870,990,21 $0,88$ 0,880,990,22			
	6	0,76	0,16	0,87	1,21	0,87	1,28	0,99	0,32	
	1	0,78	0,25	0,99	0,43	0,78	0,56	T R ² 0,96 0,95 0,98 0,98 0,98 0,99 0,97 0,97 0,97 0,97 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 <td>0,40</td>	0,40	
F F F F F F F F F F F	2	0,79	0,24	0,98	0,56	0,77	0,58	0,99	0,44	
	0,79	0,55	0,99	0,35						
Diospyros texana	4	0,80	0,25	0,99	0,46	0,83	0,52	Total x \mathbb{R}^2 S 7 0,96 0, 1 0,95 0, 6 0,98 0, 0 0,98 0, 0 0,98 0, 0 0,98 0, 0 0,99 0, 4 0,99 0, 6 0,99 0, 6 0,99 0, 2 0,99 0, 6 0,99 0, 7 0,99 0, 7 0,99 0, 1 0,99 0, 2 0,99 0, 1 0,99 0, 1 0,99 0, 2 0,99 0, 1 0,96 0, 2 0,95 0, 2 0,94 0, 2 0,97 0, 4 0,99 0, <td>0,27</td>	0,27	
sp. Acacia rigidula Havardia pallens Diospyros texana Eysenhardtia texana Acacia farnesiana	5	0,80	0,25	0,99	0,44	0,85	0,50	0,99	0,27	
	6	0,80	0,25	0,99	0,46	0,84	0,51	0,99	0,27	
	1	0,75	0,13	0,89	0,59	0,88	0,61	0,96	0,71	
	2	0,74	0,13	0,87	0,63	0,87	0,62	0,95	0,81	
Evsenhardtia	3	0,74	0,13	0,86	0,67	0,88	0,62	0,94	0,86	
texana	4	0,80	0,12	0,90	0,59	0,91	0,56	0,97	0,67	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,68								
	6	0,80	0,12	0,89	0,61	0,91	0,56	To R ² 0,96 0,95 0,98 0,98 0,98 0,99	0,68	
	1	0,77	0,28	0,94	Syx 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 1,20 1,19 1,23 1,24 1,21 0,43 0,56 0,61 0,46 0,46 0,46 0,46 0,46 0,59 0,61 0,67 0,61 0,67 0,67 0,67 0,67 0,66 0,64	0,88	0,83	0,99	0,28	
Acacia rigidula Havardia pallens Diospyros texana Eysenhardtia texana Acacia farnesiana	2	0,77	0,28	0,94	0,67	0,85	0,95	0,99	0,36	
	3	0,75	0,29	RamasFusteTotalx \mathbb{R}^2 Syx \mathbb{R}^2 Syx \mathbb{R}^2 Syx50,730,750,780,870,960,6240,730,750,760,910,950,6740,750,730,790,860,980,4140,750,750,790,900,980,4240,750,750,790,900,980,4240,750,750,790,900,980,4250,871,200,821,440,990,6460,871,190,811,450,990,6670,861,230,841,360,990,3160,871,230,861,300,990,3260,871,210,871,280,990,3250,990,430,780,560,990,4440,970,610,790,550,990,2750,990,460,830,520,990,2750,990,460,830,520,990,2750,990,460,870,660,970,6820,900,590,910,560,970,6820,990,590,910,560,970,6820,900,590,910,560,970,6830,860,67 </td						
Acacia farnesiana	4	0,77	0,29		0,22					
	5	0,77	0,29	0,95	0,64	0,88	0,87 0,96 0,96 0,91 0,95 0 0,90 0,98 0 0,90 0,98 0 0,90 0,98 0 0,90 0,98 0 0,90 0,98 0 1,44 0,99 0 1,36 0,99 0 1,32 0,99 0 1,32 0,99 0 0,56 0,99 0 0,55 0,99 0 0,55 0,99 0 0,51 0,99 0 0,51 0,99 0 0,56 0,97 0 0,56 0,97 0 0,56 0,97 0 0,56 0,97 0 0,56 0,97 0 0,56 0,97 0 0,56 0,97 0 0,95 0,99 0 0,90 0,99 0 0,90 0,99 0 0,90 0,99 0	0,21		
	6	0,78	0,29	0,95	0,64	0,88	0,88	Tota R ² 0,96 0,95 0,98 0,98 0,98 0,99 0,97 0,97 0,97 0,97 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99	0,22	

R²: coeficiente de determinación, Syx: error estándar (Kg).

errores con un rango de -2 a 2kg (1,6%) en el componente hojas y en el total, mientras que para los otros componentes los valores fueron más altos. El fuste es el que presentó valores máximos en la estimación del modelo respecto a los observados. Todos los componentes (hojas, ramas fuste y total) resultaron con una mediana ~0. Se observó una mayor variabilidad de los errores de predicción entre los árboles dentro de una misma especie que entre especies (Figura 2).

Errores de estimación con el modelo 3

El componente fuste de las especies *Acacia rigidula* y *Diospyros texana* presentó mayor error en la estimación del modelo respecto a los observados, debido a que resultó con valores desde -2 hasta 2kg, caso contrario para el resto de los componentes, con valores menores (Figura 3). Estos errores son de gran relevancia para comprender si existe una sobre o sub estimación en la biomasa en cada uno de los componentes.

Conclusiones

Se desarrollaron ecuaciones alométricas para estimar la biomasa por componente y total para cinco especies del matorral espinoso tamaulipeco, las que mostraron un buen desempeño en la predicción. El modelo potencial es el que mejor se ajustó para las especies de Evsenhardtia texana (BA= $0.877d^{1,208}$ $y R^2 =$ 0,96); Havardia pallens (BA= $0.141d^{2,207}$ y $\hat{R}^2 = 0.99$); Acacia farnesiana (BA= $0,093d^{2,323}$ y

 $R^2 = 0,99$). Sin embargo, para Acacia rigidula y Diospyros texana se ajustó el modelo de la variable combinada, BA= 1,169+0,046d²h; R²= 0,98 para primera у 1a BA= $0,810+0,037d^{2}h$; R²= 0,99 para la segunda. El diámetro a la base y la altura son variables que predicen eficientemente la biomasa en hojas, ramas, fuste y total. La utilización de modelos específicos para una especie en particular en un área determinada con condiciones climáticas locales genera una mejor estimación de la biomasa.

REFERENCIAS

Alanís E, Jiménez J, Aguirre O, Treviño E, Jurado E, González M (2008) Efecto del uso del suelo en la fitodiversidad del matorral espinoso tamaulipeco. *Ciencia UANL 11*: 56-62.

- Abich A, Mucheye T, Tebikew M, Gebremariam Y, Alemu A (2018) Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. J. Forest. Res. 29: 1-14.
- Bhandari S, Neupane H (2015) Allometric equations for estimating the above-ground biomass of *Castanopsis indica* at juvenile stage. *Banko Janakari 24*: 14-22.
- Brown S (1997) Estimating Biomass and Biomass Change of Tropical Forests: A Primer. FAO Forestry Paper 134. Food and Agriculture Organization of the United Nations. Roma, Italia. 55 pp.
- Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J, Nelson B, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. *Oecologia 145*: 87-99.
- CONAFOR (2018) Inventario Nacional Forestal y de Suelos, Informe de Resultados 2009-2014. Comisión Nacional Forestal. Zapopan, México. 200 pp.
- He H, Zhang C, Zhao X, Fousseni F, Wang J, Dai H, Yang S, Zuo Q (2018) Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. *PLoS ONE 13*: 1-16.
- Jiménez J, Alanís E, Aguirre O, Pando M, González M (2009) Análisis sobre el efecto del uso del suelo en la diversidad estructural del matorral espinoso tamaulipeco. *Madera y Bosques* 15: 5-20.
- Kebede B, Soromessa T (2018) Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosyst. Health Sustain. 4: 1-12.
- Kim C, Yoo BO, Jung SY, Lee KS (2017) Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea. *iForest 10*: 483-490.
- Mayaka T, Eba'a-Atyi R, Momo S (2017) Construction of multispecies allometric equations: is there a statistical palliative for destructive tree sampling? J. Trop. Forest Sci. 29: 282-296.
- McKechnie J, Colombo S, Chen J, Mabee W, MacLean HL (2011) Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. *Environ. Sci. Technol.* 45: 789-795.
- Méndez-González J, Luckie-Návarrete SL, Capó-Arteaga MA, Nájera-Luna JA (2011) Ecuaciones alométricas y

Figura 1. Dispersión de los datos y líneas de tendencia a partir del modelo ajustado.

Figura 2. Distribución de errores de predicción por especie en cada componente con el modelo 1 ajustado. *Hp: Havardia pallens, Et: Eysenhardtia texana, Af: Acacia farnesiana.*

estimación de incrementos en biomasa aérea y carbono en una plantación mixta de *Pinus devoniana* Lindl., y *Pinus pseudostrobus* Lindl., en Guanajuato, México. *Agrociencia* 45: 479-491. Mokria M, Mekuria W, Gebrekirstos A, Aynekulu E, Belay B, Gashaw T, Brauning A (2018) Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded

Figura 3. Distribución de errores de predicción por especie en cada componente con el modelo (3) ajustado. En el eje de las x: Ar=Acacia rigidula; Dt=Diospyros texana.

landscape in northern Ethiopia. Environ. Res. Lett. 13: 1-14.

- Mora C, Alanís E, Jiménez J, González M, Yerena J, Cuellar L (2013) Estructura, composición florística y diversidad del matorral espinoso tamaulipeco, México. *Ecol. Aplic.* 12: 29-34.
- Muturi GM, Kariuki JG, Poorter L, Mohren GM (2011) Allometric equations for estimating biomass in naturally established *Prosopis* stands in Kenya. J. *Horticult. Forestry* 4: 69-77.
- Návar J, Najera J, Jurado E (2002) Biomass estimation equations in the Tamaulipan thornscrub of north-eastern Mexico. J. Arid Environ 52: 167-179.
- Návar J, Mendez E, Najera A, Graciano J, Dale V, Parresol B (2004) Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico. J. Arid Environ. 59: 657-674.
- Návar J (2009) Biomass component equations for Latin American species and groups of species. Ann. Forest Sci. 66: 208-216.
- Návar J (2010) Biomass allometry for tree species of Northwestern Mexico. Trop. Subtrop. Agroecosyst. 12: 507-519.
- Návar J, Rodriguez-Flores F, Dominguez-Calleros P, Perez-Verdin G (2014) Diversityproductivity relationship in the Northeastern Tamaulipan Thornscrub Forest of Mexico. *Int. J. Ecol. 2014*: 1-11.
- Northup BK, Zitzer SF, Archer S, McMurtry CR, Boutton TW (2005) Above-ground biomass and carbon and nitrogen content

of woody species in a subtropical thornscrub parkland. J. Arid Environ. 62: 23-43.

- Picard N, Saint-André L, Henry M (2012) Manual de Construcción de Ecuaciones Alométricas para Estimar el Volumen y la Biomasa de los Árboles: Del Trabajo de Campo a la Predicción. FAO y CIRAD. Roma, Italia y Mintpllier, Francia. 223 pp.
- Pompa-García M, Jurado E (2015) Carbon concentration in structures of Arctostaphylos pungens HBK: An alternative CO₂ sink in forests. *Phyton 84*: 385-389.
- R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Viena, Austria.
- Rodríguez LR, Jiménez PJ, Aguirre CO, Treviño GE, Razo ZR (2009) Estimación de carbono almacenado en el bosque de pino-encino en la reserva de la Biosfera el Cielo, Tamaulipas, México. Ra Ximhai 5: 317-327.
- Rojas-García F, De Jong BH, Martínez-Zurimendí P, Paz-Pellat F (2015) Database of 478 allometric equations to estimate biomass for Mexican trees and forests. *Ann. Forest Sci.* 72: 835-864.
- Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, Álvarez-González JG (2017) Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. *Forests 8*: 1-20.
- Whitehead D (2011) Forests as carbon sinks - benefits and consequences. *Tree Physiol.* 31: 893-902.