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he knowledge of future 
sea level height in the 
nearshore environment is 

of great importance for the monitoring 
and prediction of changes in complex ma-
rine ecosystems, as well as for planning 
and constructing coastal and offshore 
structures. The instantaneous measure-
ments, as well as time averaged values of 
sea level, are not stationary either spatial-
ly or temporally. They vary under the 
synergetic influence of changing tides, at-
mospheric forcing, and currents (Pierini, 
2007). To solve the tasks of nearshore sea 
level predictions, the least-squares method 
or an alternative artificial intelligence ap-
proach, such as genetic algorithms, fuzzy 
logic or artificial neural networks, can be 
employed.

The modern view of artifi-
cial neural networks (ANNs) began in the 
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1940’s. McCulloch and Pitts (1943) showed 
that networks of artificial neurons could 
compute any arithmetic or logical function. 
Following their work, Hebb (1949) proposed 
a mechanism for learning in biological neu-
rons. In the late 50’s and 60’s the first practi-
cal ANN, the ‘perceptron’ network and the 
associated learning rule were invented 
(Rosenblatt, 1958). Widrow and Hoff (1960) 
introduced a new learning algorithm and 
used it to train adaptive linear ANNs. These 
basic perceptrons could solve only a limited 
class of problems. Thereafter, some impor-
tant work like that of Kohonen (1972) con-
tinued during the 1970’s, although for a de-
cade neural network research was suspended. 
This was mainly due to the belief that the 
research had reached a dead end and no 
powerful digital computers were available. 
During the 1980’s the number of studies in 
the field of ANNs increased dramatically; 

important new concepts were introduced, two 
of which are the most significant in the re-
birth of ANNs. The first was the use of sta-
tistical mechanics to explain the operation of 
a certain class of recurrent network described 
by Hopfield (1982). The second was the 
back-propagation algorithm (BPN) for train-
ing multilayer perceptron (MLP) networks 
discovered independently by several research-
ers, the most influential among them being 
Rumelhart and McClelland (1986). Since the 
mid 1980’s thousands of papers have been 
published, and ANNs have spread, with new 
theoretical and practical applications.

The applications, soft-
ware and hardware related to ANNs have 
grown. Neural networks are also gradual-
ly showing their abilities to solve different 
problems in oceanography. The study by 
Wong and Wilson (1984) of 30-day data 
indicated that sub-tidal sea level variation 

tide levels could not be obtained without a large number of tide 
measurements by the harmonic method. An application of the 
back-propagation artificial neural network using long-term and 
short-term measuring data is presented in this paper. On site 
tidal level data at Ingeniero White harbor in the inner part of 
Bahia Blanca estuary, Argentina, will be used to test the perfor-
mance of the present model. Comparison with conventional har-
monic methods indicates that the back-propagation neural net-
work model also predicts accurately the long-term tidal levels.

TIdAL ForeCAsTING 
IN THe BAHIA BLANCA esTUAry, 
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SUMMARY

In recent years, the availability of accurate ocean tide models 
has become increasingly important, as tides are the main con-
tributor to disposal and movement of sediments, tracers and pol-
lutants, and also due to a wide range of offshore applications 
in engineering, environmental observations, exploration and 
oceanography. Tides can be conventionally predicted by harmon-
ic analysis, which is the superposition of many sinusoidal con-
stituents with amplitudes and frequencies determined by a local 
analysis of the measured tide. However, accurate predictions of 
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plays an important role in the 
column exchange between es-
tuary and ocean through the 
inlets in the Long Island 
south shore. ANNs have been 
applied to an increasing num-
ber of real-world complex 
problems, including those of 
ocean engineering. ANNs 
have been covered by many 
authors including Haykin 
(1999), Hagan (1996) and 
Fausett (1994). Various au-
thors have recently applied 
these systems to provide reli-
able predictions of sea cur-
rents (Babovic, 1999), prob-
lems related to the quality of 
the data series (Reusch and 
Alley, 2002), wave parame-
ters (Makarynskyy, 2004), 
sea level data (Makarynskyy 
et al., 2004), wind wave data 
(Makarynskyy, 2006), tidal 
prediction (Lee et al., 2007), 
wind wave forecasts with field 
observation (Makarynskyy, 
2007), as well as predicting 
sea level variations (Ma-
karynska and Makarynskyy, 
2008). These and many other 
scientific contributions ex-
ploited the ANN capability to 
determine interrelations 
among the elements within a complex es-
tuary system.

A tidal level record is a 
determinant factor in constructions or ac-
tivities in coastal areas. Doodson (1957) 
employed the least-squares method in de-
termining harmonic parameters and it has 
been widely used to predict the sea level. 
In contrast to traditional harmonic analy-
sis, which is used only in the prediction 
of periodic tidal components, the neural 
network model can be trained to recog-
nize and predict both nonlinear and non-
periodic signals. The traditional harmonic 
analysis method is unable to provide ac-
curate predictions of long-term water level 
variations where non-tidal sea level varia-
tions are significant. Besides the predic-
tion of the sea level, a supplement of the 
tidal record is also important for a com-
plete observation of the sea level database. 
The interruption in observations may 
come from a damage of recording facili-
ties, inappropriate operation, natural di-
sasters, etc. This paper proposes the ap-
plication of the back-propagation algo-
rithm (BPN) combined with the harmonic 
analysis equation for the short and long-
term prediction of the tidal level. The 
BPN model is applied to two different 
types of tide level prediction for Ingeniero 
White harbor, Argentina.

study Area

Bahia Blanca is a me-
sotidal coastal - plain estuary located in the 
south of the Buenos Aires Province, Argen-
tina. It consists of a series of NW-SE chan-
nels separated by islands and wide tidal 
flats (Figure 1), which are the remanents of 
a late Pleistocene - early Holocene delta, 
and has an area of 1150km2 (Melo, 2004). 
The estuary has an elongated shape with a 
total length of 68km, being 200m and 4km 
wide near its head and mouth, respectively. 
Its mean depth is 10m, although values of 
the order of 22m are found at the mouth of 
the estuary (Pierini, 2007). The circulation 
in the estuary in general, and in the main 
channel in particular, is dominated by semi-
diurnal and stationary tides. The mean tidal 
amplitude is 2.4m and the tidal range and 
tidal current amplitude increase headward.

Prevailing winds are 
NW-N for over 40% of the time, while SE-S 
winds occur ~10% of the time (Piccolo et 
al., 1989). These wind directions are impor-
tant because they blow parallel to the main 
channels. Wind is a major factor in the Bahia 
Blanca Estuary dynamics since it produces 
strong delays or advances of the tidal wave 
and large differences between the real and 
the predicted astronomical tides. The ampli-
tude of the tidal wave increases with a de-

crease in depth of the chan-
nel. Bahia Blanca is a hy-
per-synchronous type estu-
ary, where the amplitude 
increases steadily from the 
mouth to the head, imply-
ing that the convergence ef-
fect on the tidal wave is 
larger than the friction ef-
fect (Pierini, 2007).

The head of the estu-
ary has a very small fresh-
water input. Only the Sauce 
Chico River and Napostá 
Grande Creek enter the es-
tuary near its head, provid-
ing most of the freshwater 
inflow. The origin of both 
courses is in Sierra de la 
Ventana, about 120km 
north from Bahia Blanca. 
Other creeks near Ingenie-
ro White (Galván, Saladillo 
de García and Maldonado) 
reach the estuary with in-
termittent flows that be-
come significant only dur-
ing periods of local precip-
itation. The Sauce Chico 
River basin has an area of 
1500km2. The annual mean 
runoff is 1.87m3·s-1, but the 
river has presented runoff 
peaks >10m3·s-1 reaching 

on several occasions discharges >50m3·s-1 
(Piccolo et al., 1989). The maximum and 
minimum monthly mean rainfall occur in 
October and August. The complex bathym-
etry and coastal configuration of the estu-
ary, as well as the continental discharges 
may affect harmonic analysis results, mak-
ing ANNs an alternative tool for short term 
based estimates of sea level.

Data and Methodology

Data in the form of 
hourly sea level records were obtained 
from the CGPBB (Consorcio de Gestión 
del Puerto de Bahia Blanca) station de-
ployed at Ingeniero White harbor 
(38º47'27.10''S, 62º16'7.42''W) in Bahia Blan-
ca estuary, Argentina. This station (Figure 
1) is operated and maintained by CGPBB, 
and the observations are referenced to the 
datum plane which is located 2.63m below 
the mean level tide gauge. The period from 
Jan 1999 to Dec 2002 was employed for 
this study (Figure 2). The record of the tide 
gauge was divided in two data sets; one of 
them served to train the NN, and the other 
was used to validate the retrieval proce-
dure but was not used to train the ANN. 
In this series there are multiple gaps ran-
domly generated in the sea level recordings 
at Ingeniero White harbor.

Figure 1. Bahia Blanca estuary and Ingeniero White tide gauge location.
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When dealing 
with time series, some 
treatment for the miss-
ing data is essential, 
since most of the anal-
ysis methods cannot 
be performed other-
wise. Classical meth-
ods, such as substitu-
tion of the gap by the 
mean value of the se-
ries or interpolation 
from the nearest 
neighbours, are unable 
to catch time varia-
tions or dependence 
upon variations in oth-
er variables. The alter-
native method of using 
neural networks to im-
prove missing values substitution (Ma-
karynskyy et al., 2005; Makarynskyy and 
Makarynska, 2007) and its comparison 
with harmonic analysis for tide forecasting 
proposed by Doodson (1957) were evaluat-
ed. In his model, widely used because of 
its simplicity, the least squares method was 
used to determine the harmonic constants. 
These constants are further substituted into 
the harmonic equation to determine the 
tidal level.

Based on the harmonic 
theory, the vertical tidal level Y(t) at time 
t at any place is expressed as

where Ao : mean water level, Ai and Bi : 
coefficients of tide components, wi : angu-
lar frequency of the tidal components, and 
N: number of component tides.

In general, the number of main tidal 
components will directly affect the accu-
racy of tidal forecasting. Thus, the influ-
ence of the number of tidal components 
on the accuracy is examined through a 
parametric study. Using the data in Inge-
niero White harbor, the tidal components 
are tabulated in Table I.

The relative root mean squared error 
(RMSE), skill index (SKI) and correlation 
coefficient (R) were used to evaluate the ac-
curacy of the ANN model and harmonic 
analysis method. They are defined by

 

in which yi : value of prediction, xi : value of 
the observation, and N: total number of hour-
ly tide levels. The mean value of the predic-
tion is  and that of the observation is .

Neural networks

The ANN is an 
information-processing system mim-
icking the biological neural network 
of the brain by interconnecting 
many ANNs. Since the principle of 
the ANN has been well document-
ed in the literature, only a brief 
summary is given in this section. 
The feasibility of a three-layer net-
work for the reproduction of com-
plex system behaviour was proven 
empirically by a number of applica-
tions (Huang et al., 2003; Lee, 
2004; Makarynskyy et al., 2004). 
Such an ANN (Figure 3) having an 
input layer (I), a hidden layer (H) 

and an output layer (O) was adopted in this 
study. Each layer consists of neurons and the 
layers are interconnected by sets of correla-
tion weights, which enable the network to 
process the data. The neurons receive inputs 
from the initial data or the interconnections 
and produce outputs by transformation, using 
an adequate non-linear transfer function. A 
common transfer function is the sigmoid 
function expressed by f(x)= (1+e-x)-1, which 
has the characteristics df/dx = f(x) [1-f(x)]. 
The training process of the ANN is essen-
tially executed through a series pattern. In 
the learning process, the interconnection 
weights are adjusted within input and output 
values. The back-propagation network (BPN) 
is the most representative learning model for 
the ANN. The output is compared to the tar-
get data, from which the network error is de-
termined. The error is then back-propagated 
through the network in order to adjust the 
weights and biases associated with each neu-
ron in the network layers. The gradient de-
scent method is utilized to calculate the 
weight of the network and adjust the weight 
of interconnections to minimize the output 
error. The error function at the output neuron 
is defined as

               
 (1)

where Tk and Ok are, separately, the value 
of target and output. Further details of the 
BPN algorithm can be found in Rumel-
hart et al. (1986).

Figure 2. Hourly sea level observations from Ingeniero White harbor tide 
gauge, partial data from time series (01/01/1999 - 12/31/2002).

TABLE I
PRINCIPAL TIDAL COMPONENT FOR 

INGENIERO WHITE HARBOR TIDAL GAUGE

Tidal Component Speed (deg/hr) H (cm) Φ (º)

Z0 0.000 263.544 0.000
M2 28.984 169.123 186.072
L2 29.528 25.475 255.364
N2 28.440 23.983 103.593
M4 57.968 22.764 178.277
S2 30.000 21.589 307.350
K1 15.041 21.151 61.178
O1 13.943 15.528 0.701
MU2 27.968 14.523 291.531
NU2 28.513 10.954 137.915

H: amplitude, φ: phase.

Figure 3. Structure of an artificial neural network.

results

To illustrate the capabili-
ty of the BPN model, the hourly tide lev-
els taken from Ingeniero White harbor, 
Argentina, were used. According to past 
records, its highest water level is 5.38m, 
the lowest water level is -0.64m and the 
average tidal range is 2.63m. In addition, 
it is a semidiurnal tide type with regular 
rise and fall of the tide twice a day. 
RMSE, R and SKI were used for the 
agreement index to present the accuracy 
of the current model.
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Short-term tide forecasting

Figures 4 to 7 present the 
prediction of the one month tidal level at 
Ingeniero White harbor with 1, 7, 15 and 21 
days training since 07-01-2002. As seen, the 
predictions of overall hourly data agree with 
the measured data. The prediction of tidal 
level with training duration of 21 days is 
better than that with one day. The correla-
tion for observation and prediction data can 

also be seen in the figures, and the correla-
tion coefficients (R) are given. The R value 
confirms that a good agreement between ob-
servations and predictions can be achieved 
by using BPN with short-term tidal data 
(one day).

Based on the harmonic 
analysis and number of tidal constituents, 
Table II shows the RMSE, R and SKI val-
ues for various numbers of tidal constituents. 
RMSE is 0.0705 with six tidal constituents 

(M2, L2, N2, M4, 
S2, K1), but the er-
ror increases to 
0.0983 if another 
two tidal constituents 
(O1 and MU2) are 
included. This im-
plies that O1 and 
MU2 cannot improve 
the accuracy of tidal 
forecasting. Thus 
M2, L2, N2, M4, 
S2, K1 are consid-
ered as the six main 
constituents for the 
Ingeniero White har-
bor study.

Based on the 
above results, differ-
ent numbers of days 
of hourly tidal obser-
vation to predict the 
tide levels were ap-
plied. Table III shows 
the values obtained 
in one month of 
hourly tidal predic-
tions, when using 

different day hourly tidal records. The results 
imply that tidal forecasting is unable to use 
only one day of hourly tidal observations 
when utilizing harmonic analysis.

Long-term tide forecasting

As mentioned previously, 
the major shortcoming of conventional har-
monic analysis for tidal level forecasting is 
the large amount of databases required to de-

termine the harmonic 
constants. On the other 
hand, the major advan-
tage of the ANN mod-
el is to predict tidal 
level in the long-term 
with short-term col-
lected data.

The RMSE on a 
long-term (over one 
month, one year) pre-
diction and observed 
data is illustrated in 
Table IV. As shown, 
the hourly tidal data 
during one month can 
be efficiently predicted 
using a one-day hourly 
tidal record. However, 
to provide an accurate 
prediction of tidal lev-
el, at least 15 days of 
hourly tidal data is re-
quired for a one year 
tidal level forecasting. 
The one year predic-
tion of tidal level using 

Figure 4. a: Hourly tidal predictions over a months period using 
different lengths of records using a one day training duration (a), 
and comparison between observed and predicted data and corre-
lation value (b).

Figure 5. Hourly tidal predictions over a months period using 
different lengths of records using a seven days training dura-
tion (a), and comparison between observed and predicted data 
and correlation value (b).

Figure 6. Hourly tidal predictions over a months period 
using different lengths of records using a 15 days training 
duration (a), and comparison between observed and predic-
ted data and correlation value (b).

Figure 7. Hourly tidal predictions over a months period using 
different lengths of records using a 21 day training duration 
(a), and comparison between observed and predicted data and 
correlation value.
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the 15 day collected data versus 
the observation and the results of 
harmonic analysis are illustrated 
in Figure 8, where solid lines de-
note the results of BPN, dashed 
lines are the predicted values us-
ing harmonic analysis, and sym-
bols are measured data. As seen 
in the figure, the prediction of the 
BPN agrees overall with the ob-
servation and the harmonic analy-
sis. These results also indicate 
that the BPN is capable of learn-
ing the level variations to predict 
the tidal variation using only very 
short-term observations. In other 
words, to reach a reasonable ac-
curacy of the prediction data for a 
one year period, 15 day training 
data are required. Figures 8 and 9 
ilustrate the scatter data over one 
year between the BPN model and 
harmonic analysis against the ob-
servational data. Comparing the 
correlation coefficient (Tables III 
and IV) of the BPN (R=0.991) 
with the harmonic analysis 
(R=0.895), it is found that the 
BPN is more accurate.

discussion

In order to 
demonstrate the enhanced perfor-
mance of the ANN, it was com-
pared to other algorithms. In com-
paring harmonic analysis and an 
ANN modelled algorithm devel-
oped with sea level data, the val-
ues produced by the ANN model 
were significantly better than those 

from the other 
model. Tables III 
and IV show the 
statistical perfor-
mance parameters 
of the two algo-
rithms, and that of 
the validation set 
and the training 
set of the study’s 
BPN. The scat-
tered plots of the 

TABLE II
TEST OF VARIOUS TIDAL COMPONENTS

Tidal Components Nº of tidal 
components

RMSE SKI R

M2, L2, N2, M4 4 0.078 0.975 0.984
M2, L2, N2, M4, S2 5 0.071 0.981 0.987
M2, L2, N2, M4, S2, K1 6 0.070 0.984 0.988
M2, L2, N2, M4, S2, K1, O1 7 0.076 0.974 0.979
M2, L2, N2, M4, S2, K1, O1, MU2 8 0.098 0.943 0.946

RMSE: relative root mean squared error, SKI: skill index, R: correlation coefficient.

TABLE III
PERFORMANCE OVER ONE MONTH 

USING MEASUREMENTS OVER 
DIFFERENT DAYS HARMONIC 

ANALYSIS SINCE 07/01/2002

Training sets RMSE SKI R

1 day 0.545 0.484 0.502
7 days 0.354 0.850 0.883
15 days 0.178 0.908 0.891
21 days 0.084 0.921 0.907

TABLE IV
PERFORMANCE OVER ONE YEAR 

USING MEASUREMENTS OVER 
DIFFERENT DAYS BPN SINCE 

07/01/2002

Training sets RMSE SKI R

1 day 0.254 0.981 0.975
7 days 0.164 0.989 0.983
15 days 0.094 0.997 0.991
21 days 0.052 1.000 0.999

Figure 8. Comparison of observed tide levels with a BPN model 
over a years period, using a 15 days training duration. Here are re-
presented only twenty days since 07/01/2002.

Figure 9. Comparison of observed tide levels with a HARM model 
over a years period, using a 15 days training duration. Here are re-
presented only twenty days since 07/01/2002.

BPN model and the harmonic analysis model 
further illustrate the dramatic difference in 
performance (Figures 8 and 9). The most no-
table difference between the two is the range 
of values reported. The BPN model ranges 
from 0.254 to 0.052m, whereas the harmonic 
analysis spans values ranging from 0.545 to 
0.084m. Thus, this locally trained optimal 
BPN model is a significant improvement over 
the current harmonic analysis algorithm. Since 
the local sea level data was used in the har-
monic analysis, the results of this algorithm 
represent a more reasonable data set for com-
parison with the BPN model. As shown in 
Table III, the harmonic analysis performance 
parameters are considerably poorer than the 
results of the BPN model. The scattered plot 
of the harmonic analysis model (Figure 9) 
shows that its performance is similar to that 
of this study’s BPN model while the sea level 
data remain above 15 days training duration. 
However, after this point the harmonic analy-
sis model performs significantly poorer.

Reflecting on the performance of the 
BPN, the size of the data set is likely to 
have been a primary cause of problems in 
modelling the transfer function. The rela-
tively small size of the data set primarily 
affects the BPN results by limiting model 
complexity and reducing the effectiveness 
of cross validation. These two effects are 
not unrelated. The size of the data set 
limits the number of free variables 
(weights and biases) in BPN models, 
which effectively controls the extent to 
which a BPN structure can grow. Thus, 
complex relationships that might require a 
large number of neurons and additional 
hidden layers in order to achieve very ac-
curate results are stunted and not able to 
fully simulate the desired relationship.

Conclusions

Unlike the conventional 
method of harmonic analysis, which re-
quires a large amount of observed tidal 
data for estimating the appropriate har-
monic parameters; this article describes 
an alternative method (BPN) for fore-
casting the hourly tidal level variations. 
With the numerical examples presented 
it is demonstrated that the present model 
is applicable and, furthermore, it has the 
capability to predict the hourly tidal lev-
els with over one month duration with 
one day observations. Also the predic-
tion over a longer duration (such as a 
year) can be effectively performed with 
a 15 days collected tidal data. The ap-
plication of this validated methodology 
over the complex bathymetry and coastal 
configuration of the Bahia Blanca estu-
ary, could possibly be successfully 
achieved to gauge tides in other parts of 
the estuary. For this, a necessary condi-
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tion would be the availability of sufficiently 
long and continuous sea level records.
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RESUMO

el método armónico no puede obtenerse sin un gran número de 
mediciones. En este trabajo se presenta una aplicación del mé-
todo propagación hacia atrás (back-propagation) de redes neu-
ronales empleando datos de corto y de largo plazo. Para medir 
la precisión del presente modelo se utilizan mediciones de ni-
vel de marea correspondientes al Puerto Ingeniero White, en la 
parte interna del estuario de Bahia Blanca, Argentina. La com-
paración con métodos armónicos convencionales indica que las 
redes neuronales empleando back-propagation también predicen 
eficientemente los niveles de mareas a largo plazo.

co não pode obter-se sem um grande número de medições. Nes-
te trabalho se apresenta uma aplicação do método propagação 
para atrás (back-propagation) de redes neuronais empregando 
dados de curto e de longo prazo. Para medir a precisão do pre-
sente modelo se utilizam medições de nível de maré correspon-
dentes ao Puerto Ingeniero White, na parte interna do estuario 
de Bahia Branca, Argentina. A comparação com métodos armô-
nicos convencionais indica que as redes neuronais empregando 
back-propagation também predizem eficientemente os níveis de 
marés a longo prazo.

Durante los últimos años, la disponibilidad de modelos oceá-
nicos cada vez más exactos han aumentado en importancia, por 
ser las mareas el principal contribuyente para la disposición y 
movimiento de trazadores, sedimentos y contaminantes, y por 
una amplia variedad de aplicaciones en ingeniería, observacio-
nes ambientales, exploración y oceanografía. Las mareas pueden 
ser pronosticadas mediante análisis armónico, que es la super-
posición de funciones sinusoidales con amplitudes y frecuencias 
determinadas en un análisis local de registros mareográficos. Sin 
embargo, la exactitud de las predicciones del nivel de marea por 

Durante os últimos anos, a disponibilidade de modelos oceâ-
nicos cada vez mais exatos têm aumentado em importância, por 
ser as marés o principal contribuinte para a disposição e mo-
vimento de traçadores, sedimentos e contaminantes, e por uma 
ampla variedade de aplicações em engenharia, observações am-
bientais, exploração e oceanografia. As marés podem ser prog-
nosticadas mediante análise armônico, que é a superposição de 
funções sinusoidais com amplitudes e frequências determinadas 
em uma análise local de registros maregráficos. Entretanto, a 
exatidão das previsões do nível da maré pelo método armôni-


