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A simple model to DESCRIBE 
 dimple dynamics

Alejandro J. Acevedo-Malavé, Eloy Sira 
and Máximo García-Sucre

ery different mecha-
nisms are known to 
take place in the prob-

lem of emulsion stability (Kashchiev 
and Exerowa, 1980; Exerowa et al., 
1983; Ivanov, 1988; Bibette, 1992; Bi-
bette et al., 1992; Sonin et al., 1994; 
Kabalnov and Wennerström, 1996). De-
pending on the thickness of the interfa-
cial film, diverse factors must be taken 
into account that have a marked influ-
ence on the physics of the problem. 
When thickness of the interfacial film 
is <300nm, the electrostatic interac-
tions must be taken into account. Math-
ematically is necessary to include a 
disjoining pressure Π≠0.

It has been reported 
that one of the most important factors 
within the stability problem of emul-
sions is the coalescence process, which 
is related to the stability of the interfa-
cial film (Vrij, 1966; Vrij and Over-
beeck, 1968; Ivanov et al., 1969; Shar-
ma and Ruckenstein, 1987).
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When drops approach 
each other in an emulsified system, the 
coalescence process begins. In this pro-
cess, the liquid between the drops 
drains off until the two drops hit and a 
new one of a greater volume forms 
(Denkov et al., 1991; Kralchevsky et 
al., 1991; Tsekov and Radoev, 1992; 
Danov et al., 1993; Jaeger et al., 1994; 
Ivanov and Kralchevsky, 1997). This 
process can be divided into two stages: 
i) the drops approach each other with-
out deformation until, at a certain dis-
tance between them a flat circular film 
appears, and ii) the thickness of this 
film begins to diminish from a certain 
separation, until it arrives to the criti-
cal separation and the two drops form 
a larger one.

Before coalescence oc-
curs, a protuberance in the shape of a 
hole forms at the interfacial film, 
which depending on its dynamics can 
oscillate until disappearance or can co-
alesce, if the two drop surfaces are su-

perposed (Ivanov, 1988; Velev et al., 
1993; Hartland and Jeelani, 1994; 
Chesters and Bazhlekov,  2000; Yeo et 
al., 2001; Yeo et al., 2003). This pro-
tuberance is known as a dimple (Fig-
ure 1).

In this paper, a hydro-
dynamic model based on the quasi-stat-
ic and lubrication approaches is pro-
posed, allowing the simulation the dim-
ple evolution.

Mathematical formulation 
of the model

The fundamental object 
of this study is to construct a model 
that allows to simulate the dimple dy-
namics. With this purpose, the Navier-
Stokes equations for the interfacial film 
and the disperse phase were considered 
in the spirit of the quasi-static and the 
lubrication approximations.

The lubrication approx-
imation is very useful to simplify the 

SUMMARY

A model based on the hydrodynamics equations that allows to 
describe the dynamics of a dimple, once it has formed, is pro-
posed. The Navier-Stokes equations are considered, and two 
fundamental approaches are used to simplify the mathematical 
treatment of the hydrodynamics equations. Certain conditions are 

considered that must be fulfilled at the interface, which serve to 
close the system of differential equations and lead to an evolu-
tion equation that describes the interfacial film dynamics. With 
the intention of solving this equation, the method of finite diffe-
rences has been used.
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hydrodynamics equations, being appli-
cable under the following conditions:

- The space between the two surfaces 
is small in comparison with the radius 
of the interface film (h(r,t) <<R, where 
h(r,t): thickness of the interface film 
and R: its radius).

- The inertial forces that act on the in-
terface film are smaller than viscous 
forces (small Reynold number).

- The “z” component of the velocity is 
smaller than its radial component.

- The dependencies on angular velocity 
are very small.

- The variation of vr with r is much 
smaller than its variation with z 
(∂vr/∂r<<∂vr/∂z).

In agreement with the 
previous suppositions, the Navier-Stokes 
equations in cylindrical coordinates 
take the form

                  (1)

                    (2)

where u: interface velocity, and τ: radial 
component of the stress tensor.

The equations for the flow 
inside the drops are given by the equation 
of continuity for an incompressible fluid and 
the Navier-Stokes equation within the quasi-
static approximation, so that

∇·v= 0                        (3)

-∇Pd+µd∇2v= 0                  (4)

where Pd: pressure at the dispersed phase, 
and μd its viscosity.

On the interfacial film 
the following conditions must be satisfied:

u= vr                                        (5)

and the sum of the shear 
stress of the dispersed phase and the in-
terfacial film must be zero, so that:

t + t= 0                      (6)

In order to obtain an 
adimensional system of equations, the 
variables of the system are scaled accord-
ing to the following relationships:

             (7)

where Req: drop radius, and V: ap-
proach velocity between the droplets.

Now, the equation sys-
tem has only one parameter, which is 
the capillary number (Ca= μdV/σ, 
where σ: interfacial tension). This pa-
rameter can be eliminated carrying out 
the following scaling on the system 
variables:

             (8)

The adimensional system 
of equations is:

 		
              (9)

 		
                  (10)

 ∇*×v*= 0                    (11)

-∇*P*
d+∇*2v*= 0                 (12)

 u*= v*
r                                           (13)

t*= t*
d = 0                                  (14)

                          (15)

where ∆*: adimensional Laplacian op-
erator acting over h*(r*,t*) in cylindri-
cal coordinates.

The central idea of this 
section is to obtain from the equation 
system (Eqs. 9-15) one equation for the 
surface h*(r*,t*) without the unknown 
variable u*. For this purpose, Eq. 10 is 
inserted in Eq. 14, so that

 		
          (16)

 where                            (17)

If, additionally, the fact 
that at the interface u*= vr

* is taken into 
account, then

                  (18)

and the pressure gradient can be calculat-
ed from Eq. 15. The resulting equation is 
inserted in Eq. 18, thus giving

 		
          (19)

Now, manipulating Eq. 9,

   (20)

On Eq. 20, the term in 
parenthesis is zero (continuity equation), so 
that

                 
(21)

The derivative of Eq. 21 
with respect to r* is

       (22)

Next, u* from Eq. 21 is 
introduced in Eq. 22, to obtain

(23)

On the other hand, if the 
surfactant is absent there are no Maran-
goni stresses on the drops surfaces, so 
that Eq. 12 takes the form

 
∇*2v*= 0                    (24)

but the radial component of the vector 
field in Eq. 24 is

          (25)

Taking into account that 
at the interface u*= v*

r and inserting Eqs. 
19, 21 and 23 in Eq. 25, it is obtained

 
 

 
      (26)

   
  
 
and in turn, Eq. 26 can be manipulated so 
as to lead to

 
(27)

The initial and boundary 
conditions of the problem are

   h(r,0)=h0+me-r2 if r ≤R

h(R,t)=h0                           (28)

and 

Figure 1. Collision between two droplets.
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ically using the finite differenc-
es method.

Results

The resolution of the evolu-
tion equation allows to know the 
front-wave dynamics at the inter-
facial film. As initial condition, a 
Gaussian form disturbance was 
used in order to simulate the dim-
ple dynamics.

The evolution of the 
thickness h* of the interfacial 
film with respect to position and 
time is shown in Figure 2. It can 
be seen that the initial distur-
bance in Gaussian form decreas-
es with time, until it reaches a 
maximum amplitude and finally 
returns without the interfacial 
film broken (the rupture of the 
interfacial film is the last stage 
of the coalescence process). 
Also, it can be observed that the 
zones near the edges of the in-
terfacial film remain approxi-
mately stable. This is a conse-
quence of the approach employed 
in the development of the model, 
where an approximately laminar 
flow draining towards the outside 
of the film has been assumed.

In the drainage process 
there are changes in the pressure 
field on the interfacial film. In 
Figure 3 it can be observed that 
the pressure field remains con-
stant for each t up to r* =5, and 
thereafter the pressure field de-
cays down to zero. Also, it can 
be seen that the pressure distri-
bution tends to grow with time, 
which means that the pressure 
grows when the liquid interface 
drains towards the outside.

At the center of the inter-
facial film pressure remains con-
stant with a value of 2, which 
means that in this region the term

 of D*h* is annulled with

its second derivative .

The behavior of the radial 
component of the viscous stress 
tensor can be appreciated in Fig-
ure 4. It is observed that for val-
ues of r* <4.5 the stress is zero. 
For values of r* >4.5 stress 
grows up to a maximum value 
and finally it decreases until be-
ing annulled.

When the liquid interface 
drains towards the outside it is 

observed that stress decreases, until the 
dimple drains completely out of the 
drop surface.

Conclusions

A model based on Navier-Stokes 
equations that describes dimple dynam-
ics was elaborated. To this end, the hy-
drodynamic equations were considered 
in the spirit of two fundamental ap-
proaches, the quasi-static and the lubri-
cation approximations.

The resolution of the evolution 
equation allows to know how does the 
dimple dynamics develop.

By solving the evolution 
equation, the dependence of the inter
facial film thickness on position and 
time was obtained. An initial distur-
bance in Gaussian form decreased with 
time until reaching maximum amplitude 
and no coalescence was observed.

The pressure field di-
minished with time, from the center of 
the interfacial film to the barrier ring. 
This behavior was inverted when the 
dimple changed its concavity.

When the liquid inter-
face drained towards the outside, the 
stress on the interfacial film diminished 
from the barrier ring to the center, and 
this tendency was inverted when the 
dimple returned to the equilibrium posi-
tion.
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where R: interfacial film radius, and 
m: a real number with value of 0.5.

Eq. 27 is the evolution 
equation for the interfacial film of 
thickness h*, which was solved numer-
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consideraron ciertas condiciones que deben cumplirse en la in-
terfase, las cuales sirven para completar el sistema de ecuacio-
nes diferenciales y llevan a una ecuación de evolución que des-
cribe la dinámica de la película interfacial. A fin de resolver la 
ecuación se utilizó el método de diferencias finitas.

condições que devem cumprir-se na interfase, as quais servem 
para completar o sistema de equações diferenciais e conduzem a 
uma equação de evolução que descreve a dinâmica da película 
interfacial. A fim de resolver a equação se utilizou o método de 
diferenças finitas.

Se propone un modelo que permite la descripción de la diná-
mica de una depresión superficial (dimple) una vez que se ha 
formado. Las ecuaciones de Navier-Stokes son consideradas, y 
dos enfoques fundamentales son utilizados para simplificar el 
tratamiento matemático de las ecuaciones hidrodinámicas. Se 

Propõe-se um modelo que permite a descrição da dinâmica 
de uma depressão superficial (dimple) após ter se formado. As 
equações de Navier-Stokes são consideradas, e dois enfoques 
fundamentais são utilizados para simplificar o tratamento ma-
temático das equações hidrodinâmicas. Consideraram-se certas 
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