ANÁLISIS COMPARATIVO DE PANELES TERMOELÉCTRICOS Y FOTOVOLTAICOS PARA ELECTRIFICACIÓN DE HOGARES

AISLADOS

Luis Juanicó y Fabián Rinalde

RESUMEN

Se presenta un análisis técnico-económico comparativo entre paneles fotovoltaicos (PV) y termogeneradores (TE) para la electrificación de hogares rurales aislados. Siendo una novel alternativa tecnológica, la generación termoeléctrica a partir del calor residual de estufas hogareñas podría convertirse en una opción renovable más económica que los actuales PVs. Esta conclusión se deriva de considerar la cadena energética com-

pleta (generación+almacenamiento+demanda) en ambos casos. Como corolario, se evidencia la conveniencia económica de diseñar adecuadamente la demanda doméstica, utilizando siempre electrodomésticos de última generación (lámparas LEDs, televisores LCD, etc.) debido a su alta eficiencia y uso de corriente continua de bajo voltaje.

COMPARATIVE ANALYSIS OF THERMOELECTRIC AND PHOTOVOLTAIC PANELS FOR ELECTRIFICATION OF ISOLATED RESIDENCES

Luis Juanicó and Fabián Rinalde

SUMMARY

A comparative technical-economical analysis of photovoltaic (PV) and thermoelectric (TE) generator panels for the electrification of isolated residences is carried out. As a novel technological alternative, thermoelectric generation from residual heat of domestic heaters could become a more economical renewable option than current PVs. This conclusion stems from

the consideration of the complete energy chain (generation + storage + demand) in both cases. As a corollary, the economic convenience of adequately designing the domestic demand is evidenced, using latest generation of electro-domestic artifacts (LED lamps, LCD TV sets, etc.), due to their high efficiency and the use of low voltage direct current.

Introducción

Los paneles fotovoltaicos (PV) son la opción renovable más generalizada para proveer electricidad a hogares rurales aislados, debido a la universalidad del recurso solar y su sencilla operación, frente a la eólica y micro hidráulica, por ejemplo. Sin embargo, la opción fotovoltaica puede resultar de mantenimiento más oneroso, debido al mayor banco de baterías requerido, dado el desencuentro entre la generación (diurna) y la demanda (fundamentalmente nocturna) hogareña.

Por otro lado, el costo específico de los PV se ha mantenido casi constante en los últimos 20 años, en torno a 6000USD/kW, limitando su utilización masiva en hogares de escasos recursos. Al incluir el banco de baterías y convertidores eléctricos, la inversión del sistema completo de generación en 220V/AC se incrementa hasta 30000USD/kW según los programas nacionales en escuelas rurales argentinas (PERMER, 2007). Mas aún, en aplicaciones de demanda continua la inversión puede superar los 100000USD/kW,

como lo demuestra la generalizada elección de paneles termogeneradores (TE) para protección catódica de oleoductos (Globalte, 2009). Este bajo desempeño económico de los PVs se debe, en primer lugar, a su bajo factor de carga (mundialmente entre 5 y 20%, en instalaciones fijas), que obliga a multiplicar la potencia instalada y el banco de baterías, y en segundo lugar, a las pérdidas de eficiencia en la cadena de generación (baterías e inversores) en sistemas de 220V/AC, las cuales pueden totalizar casi el 50%.

Los paneles TE permiten generar electricidad en forma directa y sin partes móviles (al igual que los PV) por efecto Seeback, siendo como tal de sencilla operación y montaie. Se utilizan desde hace 30 años casi exclusivamente para generación de pequeñas cargas constantes en la industria del petróleo por medio de equipos completos (con integración vertical del producto) que incluyen un quemador de gas. Estos termogeneradores son comercializados a 80000USD/kW por Global Thermoelectric, quien explota monopólicamente la tecnología

PALABRAS CLAVE / Electrificación Rural Aislada / Paneles Fotovoltaicos / Termoelectricidad /

Recibido: 23/01/2009. Modificado: 28/01/2010. Aceptado: 29/01/2010.

Luis Juanicó. Doctor e Ingeniero Nuclear, Universidad Nacional de Cuyo (UNCU), Argentina. Investigador Independiente, CONICET y Profesor, Instituto Balseiro, Argentina. Dirección: Centro Atómico Bariloche, (8400) Bariloche, Argentina. email: juanico@cab.cnea.gov.ar Fabián Rinalde. Ingeniero en Telecomunicaciones, Universidad de Morón, Argentina. Cursante de Maestría en Ingeniería, Instituto Balseiro, Argentina.

ANÁLISE COMPARATIVA DE PAINÉIS TERMOELÉCTRICOS E FOTOVOLTAICOS PARA ELETRIFICAÇÃO DE LARES ISOLADOS

Luis Juanicó e Fabián Rinalde

RESUMO

Apresenta-se uma análise técnico-econômica comparativa entre painéis fotovoltaicos (PV) e termogeradores (TE) para eletrificação de lares rurais isolados. Sendo uma iniciante alternativa tecnológica, a geração termoeléctrica a partir do calor residual de estufas caseiras poderia converter-se em uma opção renovável mais econômica que os actuais PVs. Esta conclusão se deriva de considerar a cadeia energética completa

(geração+armazenamento+demanda) em ambos os casos. Como corolário, se evidencia a conveniência econômica de desenhar adequadamente a demanda doméstica, utilizando sempre electrodomésticos de última geração (lâmpadas LEDs, televisores LCD, etc.) devido a sua alta eficiência e uso de corrente continua de baixa voltagem.

de termogeneradores para alta temperatura (TePbSb) desarrollada por 3M en la década de 1960 para el proyecto Apollo. Sin embargo, en los últimos años han surgido fabricantes norteamericanos que ofrecen paneles TE en el mercado abierto (Riffat y Xiaoli, 2003) a precios específicos similares a los PV, tales como Hi-Z (2009) y Tellurex (2009). Estos TE corresponden a otra tecnología (TeBi) que trabaja a temperaturas moderadas (250 vs 550°C de la anterior) y por ende no es adecuada para su uso con un quemador de gas; en cambio, asociada a una estufa o colector solar, ha comenzado a surgir como una nueva opción dentro del portfolio de renovables (Nuwayhid et al., 2003; Maneewan et al., 2005; Nuwayhid y Hamade, 2005; Katsaprakakis et al., 2008; Xi et al., 2007). Su principal ventaja frente a los PV, viene dada por la posibilidad de generar continuamente mientras se le provea una fuente de calor. Esta configuración favorece la generación nocturna e invernal, acompañando los picos de demanda, lo cual reduce la demanda de baterías y mejora la eficiencia global del sistema. Recientemente han aparecido proveedores de TE en China (Taihuaxing, 2009) con precios muy inferiores a los norteamericanos (hasta 1500USD/kW), que mejoran aun más las buenas perspectivas de esta novel opción. Cabe destacar que este abaratamiento no se debió a cambios tecnológicos radica-

les en la tecnología de TeBi empleada, sino simplemente a ser ésta la primera empresa del mercado abierto que consigue producir paneles TE en volúmenes apreciables, a partir de que la casa Philips lanzó al mercado un producto masivo (una estufa que optimiza la combustión de leña) basado precisamente en el uso de termogeneradores (Philips, 2006).

La tecnología TeBi fue desarrollada comercialmente hace más de 30 años en chips refrigerantes (de efecto Peltier, inverso al efecto Seeback) utilizados para aplicaciones de electrónica de potencia pero, como ya se indicó, en los últimos años han surgido firmas que los han diseñado para funcionar (en forma inversa) a temperaturas mayores a la ambiente. Por lo antes señalado, es factible considerar que surgirán nuevas y múltiples aplicaciones en el futuro, relativas a usos rurales para poblaciones de escasos recursos.

Análisis de Casos de Estudio con PV

Caso 1: Mínima Demanda

Definimos una demanda mínima basada en iluminación (2 lámparas encendidas 3h diarias) como caso de estudio (Tabla I), la cual estudiaremos satisfacer mediante tres tecnologías diferentes: 1) lámparas de filamento incandescente, 2) lámparas de bajo con-

sumo (fluorescentes) v 3) LED blancos. Como es conocido, las nuevas tecnologías logran generar iluminaciones (medidas en lúmenes, lm) varias veces mayores que las viejas lámparas de filamento. En particular, la tecnología de LEDs brillantes blancos, al igual que otras tecnologías de semiconductores muestra un desarrollo exponencial (ley de Moore) y duplica su eficiencia lumínica (medida en lm/W) cada 36 meses, siendo conocida esta tendencia como lev de Haitz (Nature Photonics, 2006). En 2002 Philips Lumileds introdujo en el mercado la primera lámpara LEDS blanca de 5W, capaz de generar con una eficiencia ligeramente superior a las lámparas incandescentes (20 contra 15 lm/W); dos años después Cree Co. obtuvo LEDs cuatro veces más eficientes (65lm/W). Se consiguen hoy en el mercado lámparas con eficiencia lumínica de hasta 150lm/W de Nichia (2009), y tubos fluorescentes de hasta 100lm/W, los cuales representan eficiencias 10 y 6 veces mayores a las convencionales, respectivamente (Wikipedia, 2009), siendo estos valores considerados en este trabajo.

La demanda global fue fijada considerando casos reales provistos por programas nacionales de electrificación argentinos (PERMER, 2007). Aún siendo arbitraria, el incluir la misma dentro del análisis comparativo de sistemas de generación permite optimizar tanto el diseño del sistema como de la propia demanda. Este último punto ha sido soslayado sistemáticamente en los programas de electrificación argentinos (Cadena, 2006). Con la metodología propuesta aquí es posible evaluar, por ejemplo, la conveniencia de utilizar lámparas LED, que no requieren convertir la generación en DC/12V a AC/220V. Se logran así ganancias de-

TABLA I DEFINICIÓN DEL CASO DE DEMANDA MÍNIMA SEGÚN LA TECNOLOGÍA DE ILUMINACIÓN UTILIZADA

Artefactos Parámetros	N° × h diarias	Sistema 1	Sistema 2	Sistema 3
Lámparas (60W o equiv.)	$2 \times 3h$	360Wh	60Wh	36Wh
Radio	$1 \times 6h$	6Wh	6Wh	6Wh
Teléfono celular	1 carga	4Wh	4Wh	4Wh
Energía total consumida		370Wh	70Wh	46Wh
Potencia pico consumida		125W	25W	17W
Eficiencia cadena generación		50%	50%	70%
Energía generada		740Wh	140Wh	66Wh
PV factor carga		5%	5%	5%
PV potencia instalada		617W	117W	55W

Sistema 1: lámparas de filamento incandescente, 2: lámparas de bajo consumo, 3: LED blancos.

TABLA II
INVERSIONES TOTALES REQUERIDAS
SEGÚN LAS TECNOLOGÍAS
DE ILUMINACIÓN UTILIZADAS,
Y AHORROS RELATIVOS A
LA PRIMERA DE ELLAS

Inversión (USD)	Sistema	Sistema	Sistema
	1	2	3
PV	3700	700	330
Instalación	300	300	0
Baterías	75	15	7
"Inverter"	375	75	0
Lámparas	1	6	12
Total	4450	1100	650
Ahorro		75%	91%

Sistema 1: lámparas de filamento incandescente, 2: lámparas de bajo consumo, 3: LED blancos.

diseñar el sistema fotovoltaico considerando la condición más exigente, siendo ésta en invierno, cuando el recurso es mínimo y las noches son más largas, lo cual coincide con las mayores pérdidas de eficiencia en las baterías por la baja temperatura de operación. acuerdo para las baterías (de plomoácido), de 1500USD/kW para el *inverter* y un costo fijo de instalación de 300USD.

Los resultados obtenidos se vuelcan en la Tabla II. Se observan significativos ahorros obtenidos (hasta del 91%) aplicando nuevas tecnologías de iluminación, y siendo casi despreciable el mayor costo de las lámparas de tecnología moderna en la ecuación económica.

Caso 2: Demanda ampliada

Se estudia ahora una demanda ampliada (con 4 lámparas)

que incluye también otros electrodomésticos: un televisor, un reproductor de video, una computadora personal y un refrigerador, definida en la Tabla III. Nuevamente se observa en los resultados (Tabla IV), que es recomendable el uso de nuevas tecnologías de bajo consumo y alimentadas por 12V/DC que permiten eliminar el uso de inverter, tales como televisores LCD v reproductores DVD, computadoras portátiles y heladeras 12V, en vez de los

viejos dispositivos 220V/AC de baja eficiencia (televisores de tubo de rayos catódicos y computadoras con monitor de igual tecnología, video caseteras, etc.). Los mayores costos de estos artefactos se justifican ampliamente en todos los casos, por la menor inversión requerida en el sistema generador, observándose ahorros en la inversión total demandada de hasta el 71%.

Análisis de Sistemas con TE

Se repitió el análisis de los casos anteriores, ahora generando electricidad a partir de TEs alimentados con una fuente hogareña térmica disponible, tal como una cocina a leña (Philips, 2006; Hi-Z, 2009) o un techo calentado por irradiación solar (Maneewan et al., 2005). Este esquema permite lograr mayores rendimientos en invierno y durante la noche (precisamente cuando la demanda es mayor), por lo que se definió un factor de carga del 25% (equivalente a 6h diarias de uso de la estufa o fuente térmica). Se reduce de este modo sensiblemente el uso de baterías. con los beneficios que esto acarrea en la eficiencia de la cadena energética y costo globales. El disponer además de las baterías dentro de la vivienda permite alargar su vida útil y mejorar su capacidad de carga en forma apreciable, aunque no se tomó aquí crédito de este factor. Ponderando la suma de estos factores, se estimó la eficiencia global del nuevo sistema de conversión eléctrica en el 85% (antes 70%). Esto último surge de considerar la mejor coordinación entre la demanda y la generación termoeléctrica (ambas mayormente nocturnas), que permite omitir parcialmente

el uso del banco de baterías en la alimentación de las cargas, en un factor que se estimó en el 50%. mientras que en la generación diurna con PVs, el 100% de la carga (nocturna) se alimentaba forzosamente a través del banco de baterías, cuya eficiencia (de carga + descarga)

TABLA III PARÁMETROS DE LA DEMANDA AMPLIADA Y DE SU GENERACIÓN

Artefactos	$N^{o} \times h$ diarias	Sistema	Sistema	Sistema
Parámetros	·	1	2	3
Lámparas (60W o equiv.)	$4 \times 5h$	1200Wh	200Wh	120Wh
Radio (1 W)	$1 \times 6h$	6Wh	6Wh	6Wh
Teléfono celular	1 carga	4Wh	4Wh	4Wh
Refrigerador	24 hs	2880Wh	1440Wh	1440Wh
TV	4 hs	400Wh	140Wh	140Wh
Video reproductor	4 hs	120Wh	16Wh	16Wh
Computadora	4 hs	1000Wh	400Wh	400Wh
Energía total consumida		5600Wh	2246Wh	2126Wh
Potencia pico consumida		740W	240W	220W
Eficiencia cadena energética	ı	50%	50%	70%
Energía generada		11200Wh	4500Wh	3050Wh
Factor de carga PV		5%	5%	5%
PV potencia instalada		9350W	3750W	2530W

Sistema 1: lámparas de filamento incandescente, 2: lámparas de bajo consumo, 3: LED blancos.

rivadas de su mayor eficiencia intrínseca y de omitir las pérdidas del sistema convertidor (*inverter*), balanceado su mayor costo con el ahorro de capital producido en el sistema generador.

Para satisfacer esta demanda durante todo el año, se debe al mapa de irradiación solar argentino en el mes de julio (Grossi Gallegos, 1998) se definió la potencia PV instalada, considerando un factor de carga del 5%. La inversión total fue calculada considerando costos específicos de 6000USD/kWh para el PV, de 100USD/kWh

TABLA IV INVERSIONES REQUERIDAS EN LA GENERACIÓN Y LA DEMANDA

Inversión (USD)	Sistema 1	Sistema 2	Sistema 3
PV	56100	22500	15190
Instalación	300	300	0
Baterías	1100	450	300
"Inverter"	1120	360	0
Total generación	58600	23600	15500
Total demanda	500	1500	1500
Inversión Total	59100	25100	17000
Ahorro		58%	71%

Sistema 1: lámparas de filamento incandescente, 2: lámparas de bajo consumo, 3: LED blancos.

TABLA V INVERSIONES REQUERIDAS CON PANELES TE Y AHORRO RELATIVO A PANELES PV

	Demanda mínima	Demanda ampliada
Energía total consumida	46Wh	2126Wh
Potencia pico consumida	17W	220W
Eficiencia cadena generación	85%	85%
Energía generada	54Wh	2500Wh
TE factor carga	25%	25%
TE potencia instalada	9W	417W
Inversión TE (USD)	54	2500
Inversión global (USD)	70	4000
Ahorro (USD)	580 / 89%	13000 / 77%

fue fijada en el 70% para todos los casos.

Los resultados obtenidos para ambos tipos de demanda se muestran en la Tabla V, en donde de acuerdo a las conclusiones anteriores solo se consideraron los artefactos de máxima eficiencia. En ambos casos se observaron significativas mejoras en el desempeño económico del sistema basado en TE, relativo a los paneles PV, con ahorros globales de inversión de hasta el 71%.

hasta el 71%. Un sistema prototípico de este tipo fue diseñado por un fabricante americano de módulos termoeléctricos (Hi-Z, 2009), funcionando adosado a la chimenea de una estufa, en la cual se utilizan disipadores aleteados (de uso común en electrónica) como sumidero de calor del lado frío. Otro ejemplo muestra un sistema similar más portátil (se coloca directamente sobre la cocina), desarrollado por el gobierno de Suecia para proveer electricidad a habitantes del círculo polar ártico (Killander y Bass, 1996). Finalmente, cabe mencionar al fabricante de módulos chino (Taihuaxing, 2009) quien en su página de Internet ofrece un prototipo portátil que utiliza una olla con agua como sumidero de calor, interponiendo el panel TE entre la hornilla y la olla. Todos estos ejemplos prácticos muestran la extrema sencillez, tanto eléctrica como mecánica, de la construcción de los sistemas termogeneradores propuestos. En el laboratorio hemos ensayado módulos de Hi-Z y Tellurex, lo cual ha permitido verificar la asequibilidad de esta presunción inicial (Juanicó y Rinalde, 2008). Actualmente las investigaciones se orientan a desarrollar un termogenerador de bajo costo, proyectado para satisfacer la demanda mínima de pobladores rurales, siguiendo el esquema térmico aquí propuesto.

Conclusiones

En este trabajo se estudia comparativamente la potencialidad de una novel tecnología de paneles termoeléctricos (TE) para electrificación de hogares rurales, relativo a la opción renovable más generalizada, la fotovoltaica. La posibilidad de generar termoelectricidad dentro del hogar en forma continua y simultáneamente con la demanda (nocturna) reduce significativamente el tamaño del banco de paneles TE y baterías a instalar; estas características, junto a su menor precio específico, permiten concluir del presente análisis que los termoeléctricos pueden ser ampliamente competitivos. Se observó que para satisfacer una demanda dada, la opción termoeléctrica permite reducir la inversión en hasta el 89% (para demanda mínima) y hasta en 13000USD (para demanda ampliada). Como corolario se señala la conveniencia de diseñar siempre la demanda hogareña conjuntamente con el sistema generador basado en energías renovables, dado el importante costo específico de este último. El uso de electrodomésticos de última generación es ampliamente recomendable en todos los casos, dado el ahorro de energía que permiten obtener. Este ahorro se debe tanto a su mayor eficiencia como a no requerir el uso de convertidores y transformadores eléctricos, dado que se alimentan de 12V/DC. Este punto ha sido hasta el presente completamente soslayado en los programas argentinos de electrificación rural, en los cuales se suelen donar equipos fotovoltaicos a pobladores de bajos recursos, mientras estos mantienen sus viejos artefactos de baja eficiencia. Así, se obtuvieron ahorros en la inversión del sistema completo (generador + artefactos) de hasta el 91%, empleando artefactos de última tecnología (lámparas LEDs, etc.), respecto de los convencionales (lámparas de filamento incandescente, etc.) de baja eficiencia.

La extrema simplicidad de los sistemas termogeneradores estudiados permitiría replicar rápidamente en toda Latinoamérica los actuales desarrollos en curso en otras regiones. Por utilizar calor residual desechado al medioambiente, puede considerarse a ésta una opción dentro del portafolio de energías renovables, y como tal, ser estudiada por la comunidad científica interesada en esta temática. Mucha de la experiencia y sistemas utilizados con PVs pueden ser utilizados aquí, dado que ambas tecnologías comparten la característica de generar corriente continua y de baja tensión.

REFERENCIAS

- Cadena C (2006) ¿Electrificación o energización? Mediante energías alternativas en zonas rurales. Avanc. Energ. Renov. Med. Amb. 10: pp. 04-83
- Globalte (2009) Global Thermoelectric. Calgary, Canadá. www.globalte.com
- Grossi Gallegos H (1998) Distribución de la radiación solar global en la República Argentina. II. Cartas de Radiación. Avanc. Energ. Renov. Med. Amb. 5: 33-42.
- Hi-Z (2009) Hi-Z Thermoelectric Technology Manufacturer. San Diego, CA, EEUU. www.hi-z.com
- Hoyos D, Serrano V, Echazú R (2006) Utilización de LED blancos para iluminación utilizando fotovoltaico. Avanc. Energ. Renov. Med. Amb. 10: 1-3.
- Juanicó L, Rinalde F (2008) Análisis comparativo de paneles fotovoltaicos y termogeneradores para electrificación rural. Anais II Cong. Bras. Energia Solar - III Conf. Latinoam. ISES. Florianópolis, SC, Brasil.
- Katsaprakakis DA, Christakis DG, Zervos A, Papantonis D, Voutsinas S (2008) Pumped

- storage systems introduction in isolated power production systems. *Renew. Energy 33*: 467-490.
- Killander A, Bass J (1996) A stove-top generator for cold areas. Proc. 15th Int. Conf. Thermoelectrics. www.hi-z. com/papers/ICT%201996%20 Pasadena%20-%20JCBass.pdf
- Maneewan S, Hirunlabha J, Khedaria J, Zeghmatib B, Teekasape S (2005) Heat gain reduction by means of thermoelectric roof solar collector. *Solar Energy* 78: 495-503.
- Nature Photonics (2006) Editorial. *Nat. Photon.* 1: 23.
- Nichia (2009) Nichia Corporation. Japón. www.nichia.com
- Nuwayhid R, Hamade R (2005) Design and testing of a locally made loop-type thermosyphonic heat sink for stove-top thermoelectric generators. *Renew. Energy 30*: 1101-1116.
- Nuwayhid R, Rowe D, Min G (2003) Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. *Renew. Energy* 28: 205-222.
- PERMER (2007) Programa de Energías Renovables en Mercados Eléctricos Rurales. www.energia.mecon.gov.ar/ permer/CatamarcaListadoEsc. pdf
- Philips (2006) Research Technology Magazine. N° 28. Oct. 2006. pp. 16-17. (www.research.philips.com/password/download/password_28.pdf).
- Riffat SB, Xiaoli Ma (2003) Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23: 913-935.
- Taihuaxing (2009) Taihuaxing Thermoelectric. China. www. sitechina.com/thermoelectric
- Tellurex (2009) Tellurex Thermoelectric Manufacturer. Traverse City, MI, EEUU www. tellurex.com/cthermo.html
- Wikipedia (2009) http:// en.wikipedia.org/wiki/Lightemitting_diode
- Xi H, Luob L, Fraisse G (2007) Development and applications of solar-based thermoelectric technologies. *Renew. Sust. Energy Rev. 11*: 923-936.